HC/gjk.lua

195 lines
5.4 KiB
Lua
Raw Normal View History

--[[
Copyright (c) 2012 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
]]--
local _PACKAGE = (...):match("^(.+)%.[^%.]+")
local vector = require(_PACKAGE .. '.vector-light')
2013-09-03 15:13:27 +00:00
local huge, abs = math.huge, math.abs
2017-11-05 22:46:31 +00:00
local simplex, edge = {}, {}
local function support(shape_a, shape_b, dx, dy)
local x,y = shape_a:support(dx,dy)
return vector.sub(x,y, shape_b:support(-dx, -dy))
end
-- returns closest edge to the origin
local function closest_edge(n)
edge.dist = huge
local i = n-1
for k = 1,n-1,2 do
local ax,ay = simplex[i], simplex[i+1]
local bx,by = simplex[k], simplex[k+1]
i = k
local ex,ey = vector.perpendicular(bx-ax, by-ay)
local nx,ny = vector.normalize(ex,ey)
local d = vector.dot(ax,ay, nx,ny)
if d < edge.dist then
edge.dist = d
edge.nx, edge.ny = nx, ny
edge.i = k
end
end
end
local function EPA(shape_a, shape_b)
-- make sure simplex is oriented counter clockwise
local cx,cy, bx,by, ax,ay = unpack(simplex, 1, 6)
if vector.dot(ax-bx,ay-by, cx-bx,cy-by) < 0 then
simplex[1],simplex[2] = ax,ay
simplex[5],simplex[6] = cx,cy
end
-- the expanding polytype algorithm
local is_either_circle = shape_a._center or shape_b._center
local last_diff_dist, n = huge, 6
while true do
2017-11-05 22:46:31 +00:00
closest_edge(n)
local px,py = support(shape_a, shape_b, edge.nx, edge.ny)
local d = vector.dot(px,py, edge.nx, edge.ny)
2017-11-05 22:46:31 +00:00
local diff_dist = d - edge.dist
if diff_dist < 1e-6 or (is_either_circle and abs(last_diff_dist - diff_dist) < 1e-10) then
2017-11-05 22:46:31 +00:00
return -d*edge.nx, -d*edge.ny
end
last_diff_dist = diff_dist
2017-11-05 22:46:31 +00:00
-- simplex = {..., simplex[edge.i-1], px, py, simplex[edge.i]
for i = n, edge.i, -1 do
simplex[i+2] = simplex[i]
end
2017-11-05 22:46:31 +00:00
simplex[edge.i+0] = px
simplex[edge.i+1] = py
n = n + 2
end
end
-- : : origin must be in plane between A and B
-- B o------o A since A is the furthest point on the MD
-- : : in direction of the origin.
local function do_line()
local bx,by, ax,ay = unpack(simplex, 1, 4)
2013-09-03 15:13:27 +00:00
local abx,aby = bx-ax, by-ay
local dx,dy = vector.perpendicular(abx,aby)
2013-09-03 15:13:27 +00:00
if vector.dot(dx,dy, -ax,-ay) < 0 then
dx,dy = -dx,-dy
end
return dx,dy
end
-- B .'
-- o-._ 1
-- | `-. .' The origin can only be in regions 1, 3 or 4:
-- | 4 o A 2 A lies on the edge of the MD and we came
-- | _.-' '. from left of BC.
-- o-' 3
-- C '.
local function do_triangle()
local cx,cy, bx,by, ax,ay = unpack(simplex, 1, 6)
local aox,aoy = -ax,-ay
local abx,aby = bx-ax, by-ay
local acx,acy = cx-ax, cy-ay
-- test region 1
local dx,dy = vector.perpendicular(abx,aby)
if vector.dot(dx,dy, acx,acy) > 0 then
dx,dy = -dx,-dy
end
if vector.dot(dx,dy, aox,aoy) > 0 then
-- simplex = {bx,by, ax,ay}
simplex[1], simplex[2] = bx,by
simplex[3], simplex[4] = ax,ay
return 4, dx,dy
end
-- test region 3
dx,dy = vector.perpendicular(acx,acy)
if vector.dot(dx,dy, abx,aby) > 0 then
dx,dy = -dx,-dy
end
if vector.dot(dx,dy, aox, aoy) > 0 then
-- simplex = {cx,cy, ax,ay}
simplex[3], simplex[4] = ax,ay
return 4, dx,dy
end
-- must be in region 4
return 6
end
local function GJK(shape_a, shape_b)
local ax,ay = support(shape_a, shape_b, 1,0)
if ax == 0 and ay == 0 then
-- only true if shape_a and shape_b are touching in a vertex, e.g.
-- .--- .---.
-- | A | .-. | B | support(A, 1,0) = x
-- '---x---. or : A :x---' support(B, -1,0) = x
-- | B | `-' => support(A,B,1,0) = x - x = 0
-- '---'
-- Since CircleShape:support(dx,dy) normalizes dx,dy we have to opt
-- out or the algorithm blows up. In accordance to the cases below
-- choose to judge this situation as not colliding.
return false
end
simplex[1], simplex[2] = ax, ay
local dx,dy = -ax,-ay
-- first iteration: line case
ax,ay = support(shape_a, shape_b, dx,dy)
if vector.dot(ax,ay, dx,dy) <= 0 then
return false
end
2013-09-03 15:13:27 +00:00
simplex[3], simplex[4] = ax,ay
dx, dy = do_line()
local n
-- all other iterations must be the triangle case
while true do
ax,ay = support(shape_a, shape_b, dx,dy)
if vector.dot(ax,ay, dx,dy) <= 0 then
return false
end
simplex[5], simplex[6] = ax,ay
n, dx, dy = do_triangle()
if n == 6 then
return true, EPA(shape_a, shape_b)
end
end
end
return GJK