--[[ Copyright (c) 2011 Matthias Richter Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]]-- local _PACKAGE, common_local = (...):match("^(.+)%.[^%.]+"), common if not (type(common) == 'table' and common.class and common.instance) then assert(common_class ~= false, 'No class commons specification available.') require(_PACKAGE .. '.class') common_local, common = common, common_local end local vector = require(_PACKAGE .. '.vector-light') ---------------------------- -- Private helper functions -- -- create vertex list of coordinate pairs local function toVertexList(vertices, x,y, ...) if not (x and y) then return vertices end -- no more arguments vertices[#vertices + 1] = {x = x, y = y} -- set vertex return toVertexList(vertices, ...) -- recurse end -- returns true if three vertices lie on a line local function areCollinear(p, q, r, eps) return math.abs(vector.det(q.x-p.x, q.y-p.y, r.x-p.x,r.y-p.y)) <= (eps or 1e-32) end -- remove vertices that lie on a line local function removeCollinear(vertices) local ret = {} local i,k = #vertices - 1, #vertices for l=1,#vertices do if not areCollinear(vertices[i], vertices[k], vertices[l]) then ret[#ret+1] = vertices[k] end i,k = k,l end return ret end -- get index of rightmost vertex (for testing orientation) local function getIndexOfleftmost(vertices) local idx = 1 for i = 2,#vertices do if vertices[i].x < vertices[idx].x then idx = i end end return idx end -- returns true if three points make a counter clockwise turn local function ccw(p, q, r) return vector.det(q.x-p.x, q.y-p.y, r.x-p.x, r.y-p.y) >= 0 end -- test wether a and b lie on the same side of the line c->d local function onSameSide(a,b, c,d) local px, py = d.x-c.x, d.y-c.y local l = vector.det(px,py, a.x-c.x, a.y-c.y) local m = vector.det(px,py, b.x-c.x, b.y-c.y) return l*m >= 0 end local function pointInTriangle(p, a,b,c) return onSameSide(p,a, b,c) and onSameSide(p,b, a,c) and onSameSide(p,c, a,b) end -- returns starting/ending indices of shared edge, i.e. if p and q share the -- edge with indices p1,p2 of p and q1,q2 of q, the return value is p1,q2 local function getSharedEdge(p,q) local pindex = setmetatable({}, {__index = function(t,k) local s = {} t[k] = s return s end}) -- record indices of vertices in p by their coordinates for i = 1,#p do pindex[p[i].x][p[i].y] = i end -- iterate over all edges in q. if both endpoints of that -- edge are in p as well, return the indices of the starting -- vertex local i,k = #q,1 for k = 1,#q do local v,w = q[i], q[k] if pindex[v.x][v.y] and pindex[w.x][w.y] then return pindex[w.x][w.y], k end i = k end end ----------------- -- Polygon class -- local Polygon = {} function Polygon:init(...) local vertices = removeCollinear( toVertexList({}, ...) ) assert(#vertices >= 3, "Need at least 3 non collinear points to build polygon (got "..#vertices..")") -- assert polygon is oriented counter clockwise local r = getIndexOfleftmost(vertices) local q = r > 1 and r - 1 or #vertices local s = r < #vertices and r + 1 or 1 if not ccw(vertices[q], vertices[r], vertices[s]) then -- reverse order if polygon is not ccw local tmp = {} for i=#vertices,1,-1 do tmp[#tmp + 1] = vertices[i] end vertices = tmp end self.vertices = vertices -- make vertices immutable setmetatable(self.vertices, {__newindex = function() error("Thou shall not change a polygon's vertices!") end}) -- compute polygon area and centroid local p,q = vertices[#vertices], vertices[1] local det = vector.det(p.x,p.y, q.x,q.y) -- also used below self.area = det for i = 2,#vertices do p,q = q,vertices[i] self.area = self.area + vector.det(p.x,p.y, q.x,q.y) end self.area = self.area / 2 p,q = vertices[#vertices], vertices[1] self.centroid = {x = (p.x+q.x)*det, y = (p.y+q.y)*det} for i = 2,#vertices do p,q = q,vertices[i] det = vector.det(p.x,p.y, q.x,q.y) self.centroid.x = self.centroid.x + (p.x+q.x) * det self.centroid.y = self.centroid.y + (p.y+q.y) * det end self.centroid.x = self.centroid.x / (6 * self.area) self.centroid.y = self.centroid.y / (6 * self.area) -- get outcircle self._radius = 0 for i = 1,#vertices do self._radius = math.max(self._radius, vector.dist(vertices[i].x,vertices[i].y, self.centroid.x,self.centroid.y)) end end local newPolygon -- return vertices as x1,y1,x2,y2, ..., xn,yn function Polygon:unpack() local v = {} for i = 1,#self.vertices do v[2*i-1] = self.vertices[i].x v[2*i] = self.vertices[i].y end return unpack(v) end -- deep copy of the polygon function Polygon:clone() return Polygon( self:unpack() ) end -- get bounding box function Polygon:bbox() local ulx,uly = self.vertices[1].x, self.vertices[1].y local lrx,lry = ulx,uly for i=2,#self.vertices do local p = self.vertices[i] if ulx > p.x then ulx = p.x end if uly > p.y then uly = p.y end if lrx < p.x then lrx = p.x end if lry < p.y then lry = p.y end end return ulx,uly, lrx,lry end -- a polygon is convex if all edges are oriented ccw function Polygon:isConvex() local function isConvex() local v = self.vertices if #v == 3 then return true end if not ccw(v[#v], v[1], v[2]) then return false end for i = 2,#v-1 do if not ccw(v[i-1], v[i], v[i+1]) then return false end end if not ccw(v[#v-1], v[#v], v[1]) then return false end return true end -- replace function so that this will only be computed once local status = isConvex() self.isConvex = function() return status end return status end function Polygon:move(dx, dy) if not dy then dx, dy = dx:unpack() end for i,v in ipairs(self.vertices) do v.x = v.x + dx v.y = v.y + dy end self.centroid.x = self.centroid.x + dx self.centroid.y = self.centroid.y + dy end function Polygon:rotate(angle, cx, cy) if not (cx and cy) then cx,cy = self.centroid.x, self.centroid.y end for i,v in ipairs(self.vertices) do -- v = (v - center):rotate(angle) + center v.x,v.y = vector.add(cx,cy, vector.rotate(angle, v.x-cx, v.y-cy)) end local v = self.centroid v.x,v.y = vector.add(cx,cy, vector.rotate(angle, v.x-cx, v.y-cy)) end function Polygon:scale(s, cx,cy) if not (cx and cy) then cx,cy = self.centroid.x, self.centroid.y end for i,v in ipairs(self.vertices) do -- v = (v - center) * s + center v.x,v.y = vector.add(cx,cy, vector.mul(s, v.x-cx, v.y-cy)) end self._radius = self._radius * s end -- triangulation by the method of kong function Polygon:triangulate() if #self.vertices == 3 then return {self:clone()} end local triangles = {} -- list of triangles to be returned local concave = {} -- list of concave edges local adj = {} -- vertex adjacencies local vertices = self.vertices -- retrieve adjacencies as the rest will be easier to implement for i,p in ipairs(vertices) do local l = (i == 1) and vertices[#vertices] or vertices[i-1] local r = (i == #vertices) and vertices[1] or vertices[i+1] adj[p] = {p = p, l = l, r = r} -- point, left and right neighbor -- test if vertex is a concave edge if not ccw(l,p,r) then concave[p] = p end end -- and ear is an edge of the polygon that contains no other -- vertex of the polygon local function isEar(p1,p2,p3) if not ccw(p1,p2,p3) then return false end for q,_ in pairs(concave) do if q ~= p1 and q ~= p2 and q ~= p3 and pointInTriangle(q, p1,p2,p3) then return false end end return true end -- main loop local nPoints, skipped = #vertices, 0 local p = adj[ vertices[2] ] while nPoints > 3 do if not concave[p.p] and isEar(p.l, p.p, p.r) then -- polygon may be a 'collinear triangle', i.e. -- all three points are on a line. In that case -- the polygon constructor throws an error. if not areCollinear(p.l, p.p, p.r) then triangles[#triangles+1] = newPolygon(p.l.x,p.l.y, p.p.x,p.p.y, p.r.x,p.r.y) skipped = 0 end if concave[p.l] and ccw(adj[p.l].l, p.l, p.r) then concave[p.l] = nil end if concave[p.r] and ccw(p.l, p.r, adj[p.r].r) then concave[p.r] = nil end -- remove point from list adj[p.p] = nil adj[p.l].r = p.r adj[p.r].l = p.l nPoints = nPoints - 1 skipped = 0 p = adj[p.l] else p = adj[p.r] skipped = skipped + 1 assert(skipped <= nPoints, "Cannot triangulate polygon (is the polygon intersecting itself?)") end end if not areCollinear(p.l, p.p, p.r) then triangles[#triangles+1] = newPolygon(p.l.x,p.l.y, p.p.x,p.p.y, p.r.x,p.r.y) end return triangles end -- return merged polygon if possible or nil otherwise function Polygon:mergedWith(other) local p,q = getSharedEdge(self.vertices, other.vertices) assert(p and q, "Polygons do not share an edge") local ret = {} for i = 1,p-1 do ret[#ret+1] = self.vertices[i].x ret[#ret+1] = self.vertices[i].y end for i = 0,#other.vertices-2 do i = ((i-1 + q) % #other.vertices) + 1 ret[#ret+1] = other.vertices[i].x ret[#ret+1] = other.vertices[i].y end for i = p+1,#self.vertices do ret[#ret+1] = self.vertices[i].x ret[#ret+1] = self.vertices[i].y end return newPolygon(unpack(ret)) end -- split polygon into convex polygons. -- note that this won't be the optimal split in most cases, as -- finding the optimal split is a really hard problem. -- the method is to first triangulate and then greedily merge -- the triangles. function Polygon:splitConvex() -- edge case: polygon is a triangle or already convex if #self.vertices <= 3 or self:isConvex() then return {self:clone()} end local convex = self:triangulate() local i = 1 repeat local p = convex[i] local k = i + 1 while k <= #convex do local success, merged = pcall(function() return p:mergedWith(convex[k]) end) if success and merged:isConvex() then convex[i] = merged p = convex[i] table.remove(convex, k) else k = k + 1 end end i = i + 1 until i >= #convex return convex end function Polygon:contains(x,y) -- test if an edge cuts the ray local function cut_ray(p,q) return ((p.y > y and q.y < y) or (p.y < y and q.y > y)) -- possible cut and (x - p.x < (y - p.y) * (q.x - p.x) / (q.y - p.y)) -- x < cut.x end -- test if the ray crosses boundary from interior to exterior. -- this is needed due to edge cases, when the ray passes through -- polygon corners local function cross_boundary(p,q) return (p.y == y and p.x > x and q.y < y) or (q.y == y and q.x > x and p.y < y) end local v = self.vertices local in_polygon = false local p,q = v[#v],v[#v] for i = 1, #v do p,q = q,v[i] if cut_ray(p,q) or cross_boundary(p,q) then in_polygon = not in_polygon end end return in_polygon end function Polygon:intersectsRay(x,y, dx,dy) --local p = vector(x,y) --local v = vector(dx,dy) local nx,ny = vector.perpendicular(dx,dy) local wx,xy,det local tmin = math.huge local q1,q2 = nil, self.vertices[#self.vertices] for i = 1, #self.vertices do q1,q2 = q2,self.vertices[i] wx,wy = q2.x - q1.x, q2.y - q1.y det = vector.det(dx,dy, wx,wy) if det ~= 0 then -- there is an intersection point. check if it lies on both -- the ray and the segment. local rx,ry = q2.x - x, q2.y - y local l = vector.det(rx,ry, wx,wy) / det local m = vector.det(dx,dy, rx,ry) / det if l >= 0 and m >= 0 and m <= 1 then -- we cannot jump out early here (i.e. when l > tmin) because -- the polygon might be concave tmin = math.min(tmin, l) end else -- lines parralel or incident. get distance of line to -- anchor point. if they are incident, check if an endpoint -- lies on the ray local dist = vector.dot(q1.x-x,q1.y-y, nx,ny) if dist == 0 then local l = vector.dot(dx,dy, q1.x-x,q1.y-y) local m = vector.dot(dx,dy, q2.x-x,q2.y-y) if l >= 0 and l >= m then tmin = math.min(tmin, l) elseif m >= 0 then tmin = math.min(tmin, m) end end end end return tmin ~= math.huge, tmin end Polygon = common_local.class('Polygon', Polygon) newPolygon = function(...) return common_local.instance(Polygon, ...) end return Polygon