--[[ Copyright (c) 2011 Matthias Richter Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]]-- module(..., package.seeall) local Class = require(_PACKAGE .. 'class') local vector = require(_PACKAGE .. 'vector') _M.class = nil _M.vector = nil ---------------------------- -- Private helper functions -- -- create vertex list of coordinate pairs local function toVertexList(vertices, x,y, ...) if not x or not y then return vertices end -- no more arguments vertices[#vertices + 1] = vector(x, y) -- set vertex return toVertexList(vertices, ...) -- recurse end -- returns true if three points lie on a line local function areCollinear(p,q,r) return (q - p):cross(r - p) == 0 end -- remove vertices that lie on a line local function removeCollinear(vertices) local ret = {} for k=1,#vertices do local i = k > 1 and k - 1 or #vertices local l = k < #vertices and k + 1 or 1 if not areCollinear(vertices[i], vertices[k], vertices[l]) then ret[#ret+1] = vertices[k] end end return ret end -- get index of rightmost vertex (for testing orientation) local function getIndexOfleftmost(vertices) local idx = 1 for i = 2,#vertices do if vertices[i].x < vertices[idx].x then idx = i end end return idx end -- returns true if three points make a counter clockwise turn local function ccw(p, q, r) return (q - p):cross(r - p) >= 0 end -- unpack vertex coordinates, i.e. {x=p, y=q}, ... -> p,q, ... local function unpackHelper(v, ...) if not v then return end return v.x,v.y,unpackHelper(...) end -- test if a point lies inside of a triangle using cramers rule local function pointInTriangle(q, p1,p2,p3) local v1,v2 = p2 - p1, p3 - p1 local qp = q - p1 local dv = v1:cross(v2) local l = qp:cross(v2) / dv if l <= 0 then return false end local m = v1:cross(qp) / dv if m <= 0 then return false end return l+m < 1 end -- returns starting indices of shared edge, i.e. if p and q share the -- edge with indices p1,p2 of p and q1,q2 of q, the return value is p1,q1 local function getSharedEdge(p,q) local vertices = {} for i,v in ipairs(q) do vertices[ tostring(v) ] = i end for i,v in ipairs(p) do local w = (i == #p) and p[1] or p[i+1] if vertices[ tostring(v) ] and vertices[ tostring(w) ] then return i, vertices[ tostring(v) ] end end end ----------------- -- Polygon class -- Polygon = Class{name = "Polygon", function(self, ...) local vertices = removeCollinear( toVertexList({}, ...) ) assert(#vertices >= 3, "Need at least 3 non collinear points to build polygon (got "..#vertices..")") -- assert polygon is oriented counter clockwise local r = getIndexOfleftmost(vertices) local q = r > 1 and r - 1 or #vertices local s = r < #vertices and r + 1 or 1 if not ccw(vertices[q], vertices[r], vertices[s]) then -- reverse order if polygon is not ccw local tmp = {} for i=#vertices,1,-1 do tmp[#tmp + 1] = vertices[i] end vertices = tmp end self.vertices = vertices -- make vertices immutable setmetatable(self.vertices, {__newindex = function() error("Thou shall not change a polygons vertices!") end}) -- compute polygon area and centroid self.area = vertices[#vertices]:cross(vertices[1]) for i = 1,#vertices-1 do self.area = self.area + vertices[i]:cross(vertices[i+1]) end self.area = self.area / 2 local p,q = vertices[#vertices], vertices[1] local det = p:cross(q) self.centroid = vector((p.x+q.x) * det, (p.y+q.y) * det) for i = 1,#vertices-1 do p,q = vertices[i], vertices[i+1] det = p:cross(q) self.centroid.x = self.centroid.x + (p.x+q.x) * det self.centroid.y = self.centroid.y + (p.y+q.y) * det end self.centroid = self.centroid / (6 * self.area) -- get outcircle self._radius = 0 for i = 1,#vertices do self._radius = math.max(vertices[i]:dist(self.centroid), self._radius) end end} -- return vertices as x1,y1,x2,y2, ..., xn,yn function Polygon:unpack() return unpackHelper( unpack(self.vertices) ) end -- deep copy of the polygon function Polygon:clone() return Polygon( self:unpack() ) end -- get bounding box function Polygon:getBBox() local ul = self.vertices[1]:clone() local lr = ul:clone() for i=2,#self.vertices do local p = self.vertices[i] if ul.x > p.x then ul.x = p.x end if ul.y > p.y then ul.y = p.y end if lr.x < p.x then lr.x = p.x end if lr.y < p.y then lr.y = p.y end end return ul.x,ul.y, lr.x,lr.y end -- a polygon is convex if all edges are oriented ccw function Polygon:isConvex() local function isConvex() local v = self.vertices if #v == 3 then return true end if not ccw(v[#v], v[1], v[2]) then return false end for i = 2,#v-1 do if not ccw(v[i-1], v[i], v[i+1]) then return false end end if not ccw(v[#v-1], v[#v], v[1]) then return false end return true end -- replace function so that this will only be computed once local status = isConvex() self.isConvex = function() return status end return status end function Polygon:move(dx, dy) if not dy then dx, dy = dx:unpack() end for i,v in ipairs(self.vertices) do self.vertices[i].x = self.vertices[i].x + dx self.vertices[i].y = self.vertices[i].y + dy end self.centroid.x = self.centroid.x + dx self.centroid.y = self.centroid.y + dy end function Polygon:rotate(angle, center, cy) local center = center or self.centroid if cy then center = vector(cy) end for i,v in ipairs(self.vertices) do self.vertices[i] = (self.vertices[i] - center):rotate_inplace(angle) + center end end -- triangulation by the method of kong function Polygon:triangulate() if #self.vertices == 3 then return {self:clone()} end local triangles = {} -- list of triangles to be returned local concave = {} -- list of concave edges local adj = {} -- vertex adjacencies local vertices = self.vertices -- retrieve adjacencies as the rest will be easier to implement for i,p in ipairs(vertices) do local l = (i == 1) and vertices[#vertices] or vertices[i-1] local r = (i == #vertices) and vertices[1] or vertices[i+1] adj[p] = {p = p, l = l, r = r} -- point, left and right neighbor -- test if vertex is a concave edge if not ccw(l,p,r) then concave[p] = p end end -- and ear is an edge of the polygon that contains no other -- vertex of the polygon local function isEar(p1,p2,p3) if not ccw(p1,p2,p3) then return false end for q,_ in pairs(concave) do if pointInTriangle(q, p1,p2,p3) then return false end end return true end -- main loop local nPoints, skipped = #vertices, 0 local p = adj[ vertices[2] ] while nPoints > 3 do if not concave[p.p] and isEar(p.l, p.p, p.r) then triangles[#triangles+1] = Polygon( unpackHelper(p.l, p.p, p.r) ) if concave[p.l] and ccw(adj[p.l].l, p.l, p.r) then concave[p.l] = nil end if concave[p.r] and ccw(p.l, p.r, adj[p.r].r) then concave[p.r] = nil end -- remove point from list adj[p.p] = nil adj[p.l].r = p.r adj[p.r].l = p.l nPoints = nPoints - 1 skipped = 0 p = adj[p.l] else p = adj[p.r] skipped = skipped + 1 assert(skipped <= nPoints, "Cannot triangulate polygon (is the polygon intersecting itself?)") end end triangles[#triangles+1] = Polygon( unpackHelper(p.l, p.p, p.r) ) return triangles end -- return merged polygon if possible or nil otherwise function Polygon:mergedWith(other) local p,q = getSharedEdge(self.vertices, other.vertices) if not (p and q) then return nil end local ret = {} for i = 1, p do ret[#ret+1] = self.vertices[i] end for i = 2, #other.vertices-1 do local k = i + q - 1 if k > #other.vertices then k = k - #other.vertices end ret[#ret+1] = other.vertices[k] end for i = p+1,#self.vertices do ret[#ret+1] = self.vertices[i] end return Polygon( unpackHelper( unpack(ret) ) ) end -- split polygon into convex polygons. -- note that this won't be the optimal split in most cases, as -- finding the optimal split is a really hard problem. -- the method is to first triangulate and then greedily merge -- the triangles. function Polygon:splitConvex() -- edge case: polygon is a triangle or already convex if #self.vertices <= 3 or self:isConvex() then return {self:clone()} end local convex = self:triangulate() local i = 1 repeat local p = convex[i] local k = i + 1 while k <= #convex do local _, merged = pcall(function() return p:mergedWith(convex[k]) end) if merged and merged:isConvex() then convex[i] = merged p = convex[i] table.remove(convex, k) else k = k + 1 end end i = i + 1 until i >= #convex return convex end function Polygon:contains(x,y) -- test if an edge cuts the ray local function cut_ray(p,q) return ((p.y > y and q.y < y) or (p.y < y and q.y > y)) -- possible cut and (x - p.x < (y - p.y) * (q.x - p.x) / (q.y - p.y)) -- x < cut.x end -- test if the ray crosses boundary from interior to exterior. -- this is needed due to edge cases, when the ray passes through -- polygon corners local function cross_boundary(p,q) return (p.y == y and p.x > x and q.y < y) or (q.y == y and q.x > x and p.y < y) end local v = self.vertices local in_polygon = false for i = 1, #v - 1 do if cut_ray(v[i], v[i+1]) or cross_boundary(v[i], v[i+1]) then in_polygon = not in_polygon end end return in_polygon end function Polygon:intersectsRay(x,y, dx,dy) local p = vector(x,y) local v = vector(dx,dy):normalize_inplace() local n = v:perpendicular() local vertices = self.vertices for i = 1, #vertices do local q1, q2 = vertices[i], vertices[ (i % #vertices) + 1 ] local w = q2 - q1 local det = v:cross(w) if det ~= 0 then -- there is an intersection point. check if it lies on both -- the ray and the segment. local r = q2 - p local l = r:cross(w) local m = v:cross(r) if l >= 0 and m >= 0 and m <= det then return true end else -- lines parralel or incident. get distance of line to -- anchor point. if they are incident, check if an endpoint -- lies on the ray local dist = (q1 - p) * n if dist == 0 then if n:cross(q1) > 0 or n:cross(q2) > 0 then return true end end end end return false end -- module() as shortcut to module.Polygon() do local m = getmetatable(_M) m.__call = function(_, ...) return Polygon(...) end end