--[[ Copyright (c) 2012 Matthias Richter Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]]-- local _PACKAGE = (...):match("^(.+)%.[^%.]+") local vector = require(_PACKAGE .. '.vector-light') local huge, abs = math.huge, math.abs local simplex, edge = {}, {} local function support(shape_a, shape_b, dx, dy) local x,y = shape_a:support(dx,dy) return vector.sub(x,y, shape_b:support(-dx, -dy)) end -- returns closest edge to the origin local function closest_edge(n) edge.dist = huge local i = n-1 for k = 1,n-1,2 do local ax,ay = simplex[i], simplex[i+1] local bx,by = simplex[k], simplex[k+1] i = k local ex,ey = vector.perpendicular(bx-ax, by-ay) local nx,ny = vector.normalize(ex,ey) local d = vector.dot(ax,ay, nx,ny) if d < edge.dist then edge.dist = d edge.nx, edge.ny = nx, ny edge.i = k end end end local function EPA(shape_a, shape_b) -- make sure simplex is oriented counter clockwise local cx,cy, bx,by, ax,ay = unpack(simplex, 1, 6) if vector.dot(ax-bx,ay-by, cx-bx,cy-by) < 0 then simplex[1],simplex[2] = ax,ay simplex[5],simplex[6] = cx,cy end -- the expanding polytype algorithm local is_either_circle = shape_a._center or shape_b._center local last_diff_dist, n = huge, 6 while true do closest_edge(n) local px,py = support(shape_a, shape_b, edge.nx, edge.ny) local d = vector.dot(px,py, edge.nx, edge.ny) local diff_dist = d - edge.dist if diff_dist < 1e-6 or (is_either_circle and abs(last_diff_dist - diff_dist) < 1e-10) then return -d*edge.nx, -d*edge.ny end last_diff_dist = diff_dist -- simplex = {..., simplex[edge.i-1], px, py, simplex[edge.i] for i = n, edge.i, -1 do simplex[i+2] = simplex[i] end simplex[edge.i+0] = px simplex[edge.i+1] = py n = n + 2 end end -- : : origin must be in plane between A and B -- B o------o A since A is the furthest point on the MD -- : : in direction of the origin. local function do_line() local bx,by, ax,ay = unpack(simplex, 1, 4) local abx,aby = bx-ax, by-ay local dx,dy = vector.perpendicular(abx,aby) if vector.dot(dx,dy, -ax,-ay) < 0 then dx,dy = -dx,-dy end return dx,dy end -- B .' -- o-._ 1 -- | `-. .' The origin can only be in regions 1, 3 or 4: -- | 4 o A 2 A lies on the edge of the MD and we came -- | _.-' '. from left of BC. -- o-' 3 -- C '. local function do_triangle() local cx,cy, bx,by, ax,ay = unpack(simplex, 1, 6) local aox,aoy = -ax,-ay local abx,aby = bx-ax, by-ay local acx,acy = cx-ax, cy-ay -- test region 1 local dx,dy = vector.perpendicular(abx,aby) if vector.dot(dx,dy, acx,acy) > 0 then dx,dy = -dx,-dy end if vector.dot(dx,dy, aox,aoy) > 0 then -- simplex = {bx,by, ax,ay} simplex[1], simplex[2] = bx,by simplex[3], simplex[4] = ax,ay return 4, dx,dy end -- test region 3 dx,dy = vector.perpendicular(acx,acy) if vector.dot(dx,dy, abx,aby) > 0 then dx,dy = -dx,-dy end if vector.dot(dx,dy, aox, aoy) > 0 then -- simplex = {cx,cy, ax,ay} simplex[3], simplex[4] = ax,ay return 4, dx,dy end -- must be in region 4 return 6 end local function GJK(shape_a, shape_b) local ax,ay = support(shape_a, shape_b, 1,0) if ax == 0 and ay == 0 then -- only true if shape_a and shape_b are touching in a vertex, e.g. -- .--- .---. -- | A | .-. | B | support(A, 1,0) = x -- '---x---. or : A :x---' support(B, -1,0) = x -- | B | `-' => support(A,B,1,0) = x - x = 0 -- '---' -- Since CircleShape:support(dx,dy) normalizes dx,dy we have to opt -- out or the algorithm blows up. In accordance to the cases below -- choose to judge this situation as not colliding. return false end simplex[1], simplex[2] = ax, ay local dx,dy = -ax,-ay -- first iteration: line case ax,ay = support(shape_a, shape_b, dx,dy) if vector.dot(ax,ay, dx,dy) <= 0 then return false end simplex[3], simplex[4] = ax,ay dx, dy = do_line() local n -- all other iterations must be the triangle case while true do ax,ay = support(shape_a, shape_b, dx,dy) if vector.dot(ax,ay, dx,dy) <= 0 then return false end simplex[5], simplex[6] = ax,ay n, dx, dy = do_triangle() if n == 6 then return true, EPA(shape_a, shape_b) end end end return GJK