HC/shapes.lua
2012-02-20 13:13:49 +01:00

469 lines
13 KiB
Lua

--[[
Copyright (c) 2011 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
]]--
local math_abs, math_floor, math_min, math_max = math.abs, math.floor, math.min, math.max
local math_sqrt, math_log, math_pi, math_huge = math.sqrt, math.log, math.pi, math.huge
local _PACKAGE = (...):match("^(.+)%.[^%.]+")
if not common and common.class then
class_commons = true
require(_PACKAGE .. '.class')
end
local vector = require(_PACKAGE .. '.vector')
local Polygon = require(_PACKAGE .. '.polygon')
local function math_absmin(a,b) return math_abs(a) < math_abs(b) and a or b end
local function test_axes(axes, shape_one, shape_two, sep, min_overlap)
for _,axis in ipairs(axes) do
local l1,r1 = shape_one:projectOn(axis)
local l2,r2 = shape_two:projectOn(axis)
-- do the intervals overlap?
if r1 < l2 or r2 < l1 then return false end
-- get the smallest absolute overlap
local overlap = math_absmin(l2-r1, r2-l1)
if math_abs(overlap) < min_overlap then
sep, min_overlap = overlap * axis, math_abs(overlap)
end
end
return true, sep, min_overlap
end
local function SAT(shape_one, axes_one, shape_two, axes_two)
local collide, sep, overlap = false, vector(0,0), math_huge
collide, sep, overlap = test_axes(axes_one, shape_one, shape_two, sep, overlap)
if not collide then return false end
collide, sep = test_axes(axes_two, shape_one, shape_two, sep, overlap)
return collide, sep
end
local function outcircles_intersect(shape_one, shape_two)
local x1,y1,r1 = shape_one:outcircle()
local x2,y2,r2 = shape_two:outcircle()
return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) <= (r1+r2)*(r1+r2)
end
--
-- base class
--
local Shape = {}
function Shape:init(t)
self._type = t
self._rotation = 0
end
function Shape:moveTo(x,y)
local cx,cy = self:center()
self:move(x - cx, y - cy)
end
function Shape:rotation()
return self._rotation
end
function Shape:rotate(angle)
self._rotation = self._rotation + angle
end
function Shape:setRotation(angle, x,y)
return self:rotate(angle - self._rotation, x,y)
end
-- supported shapes
Shape.POLYGON = setmetatable({}, {__tostring = function() return 'POLYGON' end})
Shape.COMPOUND = setmetatable({}, {__tostring = function() return 'COMPOUND' end})
Shape.CIRCLE = setmetatable({}, {__tostring = function() return 'CIRCLE' end})
Shape.POINT = setmetatable({}, {__tostring = function() return 'POINT' end})
--
-- class definitions
--
local ConvexPolygonShape = {}
function ConvexPolygonShape:init(polygon)
Shape.init(self, Shape.POLYGON)
assert(polygon:isConvex(), "Polygon is not convex.")
self._polygon = polygon
end
local ConcavePolygonShape = {}
function ConcavePolygonShape:init(poly)
Shape.init(self, Shape.COMPOUND)
self._polygon = poly
self._shapes = poly:splitConvex()
for i,s in ipairs(self._shapes) do
self._shapes[i] = common.instance(ConvexPolygonShape, s)
end
end
local CircleShape = {}
function CircleShape:init(cx,cy, radius)
Shape.init(self, Shape.CIRCLE)
self._center = vector(cx,cy)
self._radius = radius
end
local PointShape = {}
function PointShape:init(x,y)
Shape.init(self, Shape.POINT)
self._pos = vector(x,y)
end
--
-- collision functions
--
function ConvexPolygonShape:getAxes()
local axes = {}
local vert = self._polygon.vertices
for i = 1,#vert do
axes[#axes+1] = (vert[i]-vert[(i%#vert)+1]):perpendicular():normalize_inplace()
end
return axes
end
function ConvexPolygonShape:projectOn(axis)
local vertices = self._polygon.vertices
local projection = {}
for i = 1,#vertices do
projection[i] = vertices[i] * axis -- same as vertices[i]:projectOn(axis) * axis
end
return math_min(unpack(projection)), math_max(unpack(projection))
end
function CircleShape:projectOn(axis)
-- v:projectOn(a) * a = v * a (see ConvexPolygonShape)
-- therefore: (c +- a*r) * a = c*a +- |a|^2 * r
local center = self._center * axis
local shift = self._radius * axis:len2()
return center - shift, center + shift
end
-- collision dispatching:
-- let circle shape or compund shape handle the collision
function ConvexPolygonShape:collidesWith(other)
if other._type ~= Shape.POLYGON then
local collide, sep = other:collidesWith(self)
return collide, sep and -sep
end
-- else: type is POLYGON, use the SAT
if not outcircles_intersect(self, other) then return false end
return SAT(self, self:getAxes(), other, other:getAxes())
end
function ConcavePolygonShape:collidesWith(other)
if other._type == Shape.POINT then
return other:collidesWith(self)
end
if not outcircles_intersect(self, other) then return false end
local sep, collide, collisions = vector(0,0), false, 0
for _,s in ipairs(self._shapes) do
local status, separating_vector = s:collidesWith(other)
collide = collide or status
if status then
sep, collisions = sep + separating_vector, collisions + 1
end
end
return collide, sep / collisions
end
function CircleShape:collidesWith(other)
if other._type == Shape.CIRCLE then
local d = self._center:dist(other._center)
local radii = self._radius + other._radius
if d < radii then
-- if circles overlap, push it out upwards
if d == 0 then return true, radii * vector(0,1) end
-- otherwise push out in best direction
return true, (radii - d) * (self._center - other._center):normalize_inplace()
end
return false
elseif other._type == Shape.COMPOUND then
local collide, sep = other:collidesWith(self)
return collide, sep and -sep
elseif other._type == Shape.POINT then
return other:collidesWith(self)
end
-- else: other._type == POLYGON
if not outcircles_intersect(self, other) then return false end
-- retrieve closest edge to center
local points = other._polygon.vertices
local closest, dist = points[1], (self._center - points[1]):len2()
for i = 2,#points do
local d = (self._center - points[i]):len2()
if d < dist then
closest, dist = points[i], d
end
end
local axis = vector(0,1)
if dist ~= 0 then axis = (closest - self._center):normalize_inplace() end
return SAT(self, {axis}, other, other:getAxes())
end
function PointShape:collidesWith(other)
if other._type == Shape.POINT then
return (self._pos == other._pos), vector(0,0)
end
return other:contains(self._pos.x, self._pos.y), vector(0,0)
end
--
-- point location/ray intersection
--
function ConvexPolygonShape:contains(x,y)
return self._polygon:contains(x,y)
end
function ConcavePolygonShape:contains(x,y)
return self._polygon:contains(x,y)
end
function CircleShape:contains(x,y)
return (vector(x,y) - self._center):len2() < self._radius * self._radius
end
function PointShape:contains(x,y)
return x == self._pos.x and y == self._pos.y
end
function ConcavePolygonShape:intersectsRay(x,y, dx,dy)
return self._polygon:intersectsRay(x,y, dx,dy)
end
function ConvexPolygonShape:intersectsRay(x,y, dx,dy)
return self._polygon:intersectsRay(x,y, dx,dy)
end
-- circle intersection if distance of ray/center is smaller
-- than radius.
-- with r(s) = p + d*s = (x,y) + (dx,dy) * s defining the ray and
-- (x - cx)^2 + (y - cy)^2 = r^2, this problem is eqivalent to
-- solving [with c = (cx,cy)]:
--
-- d*d s^2 + 2 d*(p-c) s + (p-c)*(p-c)-r^2 = 0
function CircleShape:intersectsRay(x,y, dx,dy)
local pc = vector(x,y) - self._center
local d = vector(dx,dy)
local a = d * d
local b = 2 * d * pc
local c = pc * pc - self._radius * self._radius
local discr = b*b - 4*a*c
if discr < 0 then return false end
discr = math_sqrt(discr)
local s1,s2 = discr-b, -discr-b
if s1 < 0 then -- first solution is off the ray
return s2 >= 0, s2/(2*a)
elseif s2 < 0 then -- second solution is off the ray
return s1 >= 0, s1/(2*a)
end
-- both solutions on the ray
return true, math_min(s1,s2)/(2*a)
end
-- point shape intersects ray if it lies on the ray
function PointShape:intersectsRay(x,y,dx,dy)
local p = self._pos - vector(x,y)
local d = vector(dx,dy)
local t = p * d / d:len2()
return t >= 0, t
end
--
-- auxiliary
--
function ConvexPolygonShape:center()
return self._polygon.centroid:unpack()
end
function ConcavePolygonShape:center()
return self._polygon.centroid:unpack()
end
function CircleShape:center()
return self._center:unpack()
end
function PointShape:center()
return self._pos:unpack()
end
function ConvexPolygonShape:outcircle()
local cx,cy = self:center()
return cx,cy, self._polygon._radius
end
function ConcavePolygonShape:outcircle()
local cx,cy = self:center()
return cx,cy, self._polygon._radius
end
function CircleShape:outcircle()
local cx,cy = self:center()
return cx,cy, self._radius
end
function PointShape:outcircle()
return self._pos.x, self._pos.y, 0
end
function ConvexPolygonShape:bbox()
return self._polygon:getBBox()
end
function ConcavePolygonShape:bbox()
return self._polygon:getBBox()
end
function CircleShape:bbox()
local cx,cy = self._center:unpack()
local r = self._radius
return cx-r,cy-r, cx+r,cy+r
end
function PointShape:bbox()
local x,y = self._pos:unpack()
return x,y,x,y
end
function ConvexPolygonShape:move(x,y)
self._polygon:move(x,y)
end
function ConcavePolygonShape:move(x,y)
self._polygon:move(x,y)
for _,p in ipairs(self._shapes) do
p:move(x,y)
end
end
function CircleShape:move(x,y)
self._center = self._center + vector(x,y)
end
function PointShape:move(x,y)
self._pos.x = self._pos.x + x
self._pos.y = self._pos.y + y
end
function ConcavePolygonShape:rotate(angle,cx,cy)
Shape.rotate(self, angle)
self._polygon:rotate(angle,cx)
for _,p in ipairs(self._shapes) do
p:rotate(angle, cx and vector(cx,cy) or self._polygon.centroid)
end
end
function ConvexPolygonShape:rotate(angle, cx,cy)
Shape.rotate(self, angle)
self._polygon:rotate(angle, cx, cy)
end
function CircleShape:rotate(angle, cx,cy)
Shape.rotate(self, angle)
if not cx then return end
local c = vector(cx,cy)
self._center = (self._center - c):rotate_inplace(angle) + c
end
function PointShape:rotate(angle, cx,cy)
Shape.rotate(self, angle)
if not cx then return end
local c = vector(cx,cy)
self._pos = (self._pos - c):rotate_inplace(angle) + c
end
function ConvexPolygonShape:draw(mode)
local mode = mode or 'line'
love.graphics.polygon(mode, self._polygon:unpack())
end
function ConcavePolygonShape:draw(mode)
local mode = mode or 'line'
if mode == 'line' then
love.graphics.polygon('line', self._polygon:unpack())
else
for _,p in ipairs(self._shapes) do
love.graphics.polygon(mode, p._polygon:unpack())
end
end
end
function CircleShape:draw(mode, segments)
love.graphics.circle(mode or 'line', self._center.x, self._center.y, self._radius)
end
function PointShape:draw()
love.graphics.point(self._pos.x, self._pos.y)
end
Shape = common.class('Shape', Shape)
ConvexPolygonShape = common.class('ConvexPolygonShape', ConvexPolygonShape, Shape)
ConcavePolygonShape = common.class('ConcavePolygonShape', ConcavePolygonShape, Shape)
CircleShape = common.class('CircleShape', CircleShape, Shape)
PointShape = common.class('PointShape', PointShape, Shape)
local function newPolygonShape(polygon, ...)
-- create from coordinates if needed
if type(polygon) == "number" then
polygon = common.instance(Polygon, polygon, ...)
else
polygon = polygon:clone()
end
if polygon:isConvex() then
return common.instance(ConvexPolygonShape, polygon)
end
return common.instance(ConcavePolygonShape, polygon)
end
local function newCircleShape(...)
return common.instance(CircleShape, ...)
end
local function newPointShape(...)
return common.instance(PointShape, ...)
end
return {
ConcavePolygonShape = ConcavePolygonShape,
ConvexPolygonShape = ConvexPolygonShape,
CircleShape = CircleShape,
PointShape = PointShape,
newPolygonShape = newPolygonShape,
newCircleShape = newCircleShape,
newPointShape = newPointShape,
}