HC/polygon.lua
2011-11-13 14:15:46 +01:00

389 lines
11 KiB
Lua

--[[
Copyright (c) 2011 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
]]--
local _PACKAGE = (...):match("^(.+)%.[^%.]+")
local Class = require(_PACKAGE .. '.class')
local vector = require(_PACKAGE .. '.vector')
----------------------------
-- Private helper functions
--
-- create vertex list of coordinate pairs
local function toVertexList(vertices, x,y, ...)
if not x or not y then return vertices end -- no more arguments
vertices[#vertices + 1] = vector(x, y) -- set vertex
return toVertexList(vertices, ...) -- recurse
end
-- returns true if three points lie on a line
local function areCollinear(p,q,r)
return (q - p):cross(r - p) == 0
end
-- remove vertices that lie on a line
local function removeCollinear(vertices)
local ret = {}
for k=1,#vertices do
local i = k > 1 and k - 1 or #vertices
local l = k < #vertices and k + 1 or 1
if not areCollinear(vertices[i], vertices[k], vertices[l]) then
ret[#ret+1] = vertices[k]
end
end
return ret
end
-- get index of rightmost vertex (for testing orientation)
local function getIndexOfleftmost(vertices)
local idx = 1
for i = 2,#vertices do
if vertices[i].x < vertices[idx].x then
idx = i
end
end
return idx
end
-- returns true if three points make a counter clockwise turn
local function ccw(p, q, r)
return (q - p):cross(r - p) >= 0
end
-- unpack vertex coordinates, i.e. {x=p, y=q}, ... -> p,q, ...
local function unpackHelper(v, ...)
if not v then return end
return v.x,v.y,unpackHelper(...)
end
-- test if a point lies inside of a triangle using cramers rule
local function pointInTriangle(q, p1,p2,p3)
local v1,v2 = p2 - p1, p3 - p1
local qp = q - p1
local dv = v1:cross(v2)
local l = qp:cross(v2) / dv
if l <= 0 then return false end
local m = v1:cross(qp) / dv
if m <= 0 then return false end
return l+m < 1
end
-- returns starting indices of shared edge, i.e. if p and q share the
-- edge with indices p1,p2 of p and q1,q2 of q, the return value is p1,q1
local function getSharedEdge(p,q)
local vertices = {}
for i,v in ipairs(q) do vertices[ tostring(v) ] = i end
for i,v in ipairs(p) do
local w = (i == #p) and p[1] or p[i+1]
if vertices[ tostring(v) ] and vertices[ tostring(w) ] then
return i, vertices[ tostring(v) ]
end
end
end
-----------------
-- Polygon class
--
local Polygon = Class{name = "Polygon", function(self, ...)
local vertices = removeCollinear( toVertexList({}, ...) )
assert(#vertices >= 3, "Need at least 3 non collinear points to build polygon (got "..#vertices..")")
-- assert polygon is oriented counter clockwise
local r = getIndexOfleftmost(vertices)
local q = r > 1 and r - 1 or #vertices
local s = r < #vertices and r + 1 or 1
if not ccw(vertices[q], vertices[r], vertices[s]) then -- reverse order if polygon is not ccw
local tmp = {}
for i=#vertices,1,-1 do
tmp[#tmp + 1] = vertices[i]
end
vertices = tmp
end
self.vertices = vertices
-- make vertices immutable
setmetatable(self.vertices, {__newindex = function() error("Thou shall not change a polygons vertices!") end})
-- compute polygon area and centroid
self.area = vertices[#vertices]:cross(vertices[1])
for i = 1,#vertices-1 do
self.area = self.area + vertices[i]:cross(vertices[i+1])
end
self.area = self.area / 2
local p,q = vertices[#vertices], vertices[1]
local det = p:cross(q)
self.centroid = vector((p.x+q.x) * det, (p.y+q.y) * det)
for i = 1,#vertices-1 do
p,q = vertices[i], vertices[i+1]
det = p:cross(q)
self.centroid.x = self.centroid.x + (p.x+q.x) * det
self.centroid.y = self.centroid.y + (p.y+q.y) * det
end
self.centroid = self.centroid / (6 * self.area)
-- get outcircle
self._radius = 0
for i = 1,#vertices do
self._radius = math.max(vertices[i]:dist(self.centroid), self._radius)
end
end}
-- return vertices as x1,y1,x2,y2, ..., xn,yn
function Polygon:unpack()
return unpackHelper( unpack(self.vertices) )
end
-- deep copy of the polygon
function Polygon:clone()
return Polygon( self:unpack() )
end
-- get bounding box
function Polygon:getBBox()
local ul = self.vertices[1]:clone()
local lr = ul:clone()
for i=2,#self.vertices do
local p = self.vertices[i]
if ul.x > p.x then ul.x = p.x end
if ul.y > p.y then ul.y = p.y end
if lr.x < p.x then lr.x = p.x end
if lr.y < p.y then lr.y = p.y end
end
return ul.x,ul.y, lr.x,lr.y
end
-- a polygon is convex if all edges are oriented ccw
function Polygon:isConvex()
local function isConvex()
local v = self.vertices
if #v == 3 then return true end
if not ccw(v[#v], v[1], v[2]) then
return false
end
for i = 2,#v-1 do
if not ccw(v[i-1], v[i], v[i+1]) then
return false
end
end
if not ccw(v[#v-1], v[#v], v[1]) then
return false
end
return true
end
-- replace function so that this will only be computed once
local status = isConvex()
self.isConvex = function() return status end
return status
end
function Polygon:move(dx, dy)
if not dy then
dx, dy = dx:unpack()
end
for i,v in ipairs(self.vertices) do
v.x = v.x + dx
v.y = v.y + dy
end
self.centroid.x = self.centroid.x + dx
self.centroid.y = self.centroid.y + dy
end
function Polygon:rotate(angle, center, cy)
local center = center or self.centroid
if cy then center = vector(center, cy) end
for i,v in ipairs(self.vertices) do
self.vertices[i] = (self.vertices[i] - center):rotate_inplace(angle) + center
end
self.centroid = (self.centroid - center):rotate_inplace(angle) + center
end
-- triangulation by the method of kong
function Polygon:triangulate()
if #self.vertices == 3 then return {self:clone()} end
local triangles = {} -- list of triangles to be returned
local concave = {} -- list of concave edges
local adj = {} -- vertex adjacencies
local vertices = self.vertices
-- retrieve adjacencies as the rest will be easier to implement
for i,p in ipairs(vertices) do
local l = (i == 1) and vertices[#vertices] or vertices[i-1]
local r = (i == #vertices) and vertices[1] or vertices[i+1]
adj[p] = {p = p, l = l, r = r} -- point, left and right neighbor
-- test if vertex is a concave edge
if not ccw(l,p,r) then concave[p] = p end
end
-- and ear is an edge of the polygon that contains no other
-- vertex of the polygon
local function isEar(p1,p2,p3)
if not ccw(p1,p2,p3) then return false end
for q,_ in pairs(concave) do
if pointInTriangle(q, p1,p2,p3) then return false end
end
return true
end
-- main loop
local nPoints, skipped = #vertices, 0
local p = adj[ vertices[2] ]
while nPoints > 3 do
if not concave[p.p] and isEar(p.l, p.p, p.r) then
triangles[#triangles+1] = Polygon( unpackHelper(p.l, p.p, p.r) )
if concave[p.l] and ccw(adj[p.l].l, p.l, p.r) then
concave[p.l] = nil
end
if concave[p.r] and ccw(p.l, p.r, adj[p.r].r) then
concave[p.r] = nil
end
-- remove point from list
adj[p.p] = nil
adj[p.l].r = p.r
adj[p.r].l = p.l
nPoints = nPoints - 1
skipped = 0
p = adj[p.l]
else
p = adj[p.r]
skipped = skipped + 1
assert(skipped <= nPoints, "Cannot triangulate polygon (is the polygon intersecting itself?)")
end
end
triangles[#triangles+1] = Polygon( unpackHelper(p.l, p.p, p.r) )
return triangles
end
-- return merged polygon if possible or nil otherwise
function Polygon:mergedWith(other)
local p,q = getSharedEdge(self.vertices, other.vertices)
if not (p and q) then return nil end
local ret = {}
for i = 1, p do ret[#ret+1] = self.vertices[i] end
for i = 2, #other.vertices-1 do
local k = i + q - 1
if k > #other.vertices then k = k - #other.vertices end
ret[#ret+1] = other.vertices[k]
end
for i = p+1,#self.vertices do ret[#ret+1] = self.vertices[i] end
return Polygon( unpackHelper( unpack(ret) ) )
end
-- split polygon into convex polygons.
-- note that this won't be the optimal split in most cases, as
-- finding the optimal split is a really hard problem.
-- the method is to first triangulate and then greedily merge
-- the triangles.
function Polygon:splitConvex()
-- edge case: polygon is a triangle or already convex
if #self.vertices <= 3 or self:isConvex() then return {self:clone()} end
local convex = self:triangulate()
local i = 1
repeat
local p = convex[i]
local k = i + 1
while k <= #convex do
local _, merged = pcall(function() return p:mergedWith(convex[k]) end)
if merged and merged:isConvex() then
convex[i] = merged
p = convex[i]
table.remove(convex, k)
else
k = k + 1
end
end
i = i + 1
until i >= #convex
return convex
end
function Polygon:contains(x,y)
-- test if an edge cuts the ray
local function cut_ray(p,q)
return ((p.y > y and q.y < y) or (p.y < y and q.y > y)) -- possible cut
and (x - p.x < (y - p.y) * (q.x - p.x) / (q.y - p.y)) -- x < cut.x
end
-- test if the ray crosses boundary from interior to exterior.
-- this is needed due to edge cases, when the ray passes through
-- polygon corners
local function cross_boundary(p,q)
return (p.y == y and p.x > x and q.y < y)
or (q.y == y and q.x > x and p.y < y)
end
local v = self.vertices
local in_polygon = false
for i = 1, #v do
local p, q = v[i], v[(i % #v) + 1]
if cut_ray(p,q) or cross_boundary(p,q) then
in_polygon = not in_polygon
end
end
return in_polygon
end
function Polygon:intersectsRay(x,y, dx,dy)
local p = vector(x,y)
local v = vector(dx,dy)
local n = v:perpendicular()
local vertices = self.vertices
for i = 1, #vertices do
local q1, q2 = vertices[i], vertices[ (i % #vertices) + 1 ]
local w = q2 - q1
local det = v:cross(w)
if det ~= 0 then
-- there is an intersection point. check if it lies on both
-- the ray and the segment.
local r = q2 - p
local l = r:cross(w)
local m = v:cross(r)
if l >= 0 and m >= 0 and m <= det then return true, l end
else
-- lines parralel or incident. get distance of line to
-- anchor point. if they are incident, check if an endpoint
-- lies on the ray
local dist = (q1 - p) * n
if dist == 0 then
local l,m = v * (q1 - p), v * (q2 - p)
if l >= 0 and l >= m then return true, l end
if m >= 0 then return true, m end
end
end
end
return false
end
return Polygon