mirror of
https://github.com/vrld/HC.git
synced 2024-11-18 12:54:23 +00:00
ce4b8011da
The Gilbert–Johnson–Keerthi collision detection algorithm is significantly faster than collision detection using the separating axis theorem. GJK can only determine whether two shapes collide, but not the penetration vector. The expanding polytype algorithm can use information from GJK to quickly find the required vector.
417 lines
11 KiB
Lua
417 lines
11 KiB
Lua
--[[
|
|
Copyright (c) 2011 Matthias Richter
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
Except as contained in this notice, the name(s) of the above copyright holders
|
|
shall not be used in advertising or otherwise to promote the sale, use or
|
|
other dealings in this Software without prior written authorization.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
]]--
|
|
|
|
local math_min, math_sqrt, math_huge = math.min, math.sqrt, math.huge
|
|
|
|
local _PACKAGE = (...):match("^(.+)%.[^%.]+")
|
|
if not common and common.class then
|
|
class_commons = true
|
|
require(_PACKAGE .. '.class')
|
|
end
|
|
local vector = require(_PACKAGE .. '.vector-light')
|
|
local Polygon = require(_PACKAGE .. '.polygon')
|
|
local GJK = require(_PACKAGE .. '.gjk') -- actual collision detection
|
|
|
|
--
|
|
-- base class
|
|
--
|
|
local Shape = {}
|
|
function Shape:init(t)
|
|
self._type = t
|
|
self._rotation = 0
|
|
end
|
|
|
|
function Shape:moveTo(x,y)
|
|
local cx,cy = self:center()
|
|
self:move(x - cx, y - cy)
|
|
end
|
|
|
|
function Shape:rotation()
|
|
return self._rotation
|
|
end
|
|
|
|
function Shape:rotate(angle)
|
|
self._rotation = self._rotation + angle
|
|
end
|
|
|
|
function Shape:setRotation(angle, x,y)
|
|
return self:rotate(angle - self._rotation, x,y)
|
|
end
|
|
|
|
-- supported shapes
|
|
Shape.POLYGON = setmetatable({}, {__tostring = function() return 'POLYGON' end})
|
|
Shape.COMPOUND = setmetatable({}, {__tostring = function() return 'COMPOUND' end})
|
|
Shape.CIRCLE = setmetatable({}, {__tostring = function() return 'CIRCLE' end})
|
|
Shape.POINT = setmetatable({}, {__tostring = function() return 'POINT' end})
|
|
|
|
--
|
|
-- class definitions
|
|
--
|
|
local ConvexPolygonShape = {}
|
|
function ConvexPolygonShape:init(polygon)
|
|
Shape.init(self, Shape.POLYGON)
|
|
assert(polygon:isConvex(), "Polygon is not convex.")
|
|
self._polygon = polygon
|
|
end
|
|
|
|
local ConcavePolygonShape = {}
|
|
function ConcavePolygonShape:init(poly)
|
|
Shape.init(self, Shape.COMPOUND)
|
|
self._polygon = poly
|
|
self._shapes = poly:splitConvex()
|
|
for i,s in ipairs(self._shapes) do
|
|
self._shapes[i] = common.instance(ConvexPolygonShape, s)
|
|
end
|
|
end
|
|
|
|
local CircleShape = {}
|
|
function CircleShape:init(cx,cy, radius)
|
|
Shape.init(self, Shape.CIRCLE)
|
|
self._center = {x = cx, y = cy}
|
|
self._radius = radius
|
|
end
|
|
|
|
local PointShape = {}
|
|
function PointShape:init(x,y)
|
|
Shape.init(self, Shape.POINT)
|
|
self._pos = {x = x, y = y}
|
|
end
|
|
|
|
--
|
|
-- collision functions
|
|
--
|
|
function ConvexPolygonShape:support(dx,dy)
|
|
local v = self._polygon.vertices
|
|
local max, vmax = -math_huge
|
|
for i = 1,#v do
|
|
local d = vector.dot(v[i].x,v[i].y, dx,dy)
|
|
if d > max then
|
|
max, vmax = d, v[i]
|
|
end
|
|
end
|
|
return vmax.x, vmax.y
|
|
end
|
|
|
|
function CircleShape:support(dx,dy)
|
|
return vector.add(self._center.x, self._center.y,
|
|
vector.mul(self._radius, vector.normalize(dx,dy)))
|
|
end
|
|
|
|
-- collision dispatching:
|
|
-- let circle shape or compund shape handle the collision
|
|
function ConvexPolygonShape:collidesWith(other)
|
|
if other._type ~= Shape.POLYGON then
|
|
local collide, sx,sy = other:collidesWith(self)
|
|
return collide, sx and -sx, sy and -sy
|
|
end
|
|
|
|
-- else: type is POLYGON, use the SAT
|
|
return GJK(self, other)
|
|
end
|
|
|
|
function ConcavePolygonShape:collidesWith(other)
|
|
if other._type == Shape.POINT then
|
|
return other:collidesWith(self)
|
|
end
|
|
|
|
-- TODO: better way of doing this. report all the separations?
|
|
local collide,dx,dy,count = false,0,0,0
|
|
for _,s in ipairs(self._shapes) do
|
|
local status, sx,sy = s:collidesWith(other)
|
|
collide = collide or status
|
|
if status then
|
|
dx,dy = dx+sx, dy+sy
|
|
count = count + 1
|
|
end
|
|
end
|
|
return collide, dx/count, dy/count
|
|
end
|
|
|
|
function CircleShape:collidesWith(other)
|
|
if other._type == Shape.CIRCLE then
|
|
local px,py = self._center.x-other._center.x, self._center.y-other._center.y
|
|
local d = vector.len2(px,py)
|
|
local radii = self._radius + other._radius
|
|
if d < radii*radii then
|
|
-- if circles overlap, push it out upwards
|
|
if d == 0 then return true, 0,radii end
|
|
-- otherwise push out in best direction
|
|
return true, vector.mul(radii - math_sqrt(d), vector.normalize(px,py))
|
|
end
|
|
return false
|
|
elseif other._type == Shape.COMPOUND then
|
|
local collide, sep = other:collidesWith(self)
|
|
return collide, sep and -sep
|
|
elseif other._type == Shape.POINT then
|
|
return other:collidesWith(self)
|
|
end
|
|
|
|
-- else: other._type == POLYGON
|
|
return GJK(self, other)
|
|
end
|
|
|
|
function PointShape:collidesWith(other)
|
|
if other._type == Shape.POINT then
|
|
return (self._pos == other._pos), 0,0
|
|
end
|
|
return other:contains(self._pos.x, self._pos.y), 0,0
|
|
end
|
|
|
|
--
|
|
-- point location/ray intersection
|
|
--
|
|
function ConvexPolygonShape:contains(x,y)
|
|
return self._polygon:contains(x,y)
|
|
end
|
|
|
|
function ConcavePolygonShape:contains(x,y)
|
|
return self._polygon:contains(x,y)
|
|
end
|
|
|
|
function CircleShape:contains(x,y)
|
|
return vector.len2(x-self._center.x, y-self._center.y) < self._radius * self._radius
|
|
end
|
|
|
|
function PointShape:contains(x,y)
|
|
return x == self._pos.x and y == self._pos.y
|
|
end
|
|
|
|
|
|
function ConcavePolygonShape:intersectsRay(x,y, dx,dy)
|
|
return self._polygon:intersectsRay(x,y, dx,dy)
|
|
end
|
|
|
|
function ConvexPolygonShape:intersectsRay(x,y, dx,dy)
|
|
return self._polygon:intersectsRay(x,y, dx,dy)
|
|
end
|
|
|
|
-- circle intersection if distance of ray/center is smaller
|
|
-- than radius.
|
|
-- with r(s) = p + d*s = (x,y) + (dx,dy) * s defining the ray and
|
|
-- (x - cx)^2 + (y - cy)^2 = r^2, this problem is eqivalent to
|
|
-- solving [with c = (cx,cy)]:
|
|
--
|
|
-- d*d s^2 + 2 d*(p-c) s + (p-c)*(p-c)-r^2 = 0
|
|
function CircleShape:intersectsRay(x,y, dx,dy)
|
|
local pcx,pcy = x-self._center.x, y-self._center.y
|
|
|
|
local a = vector.len2(dx,dy)
|
|
local b = 2 * vector.dot(dx,dy, pcx,pcy)
|
|
local c = vector.len2(pcx,pcy) - self._radius * self._radius
|
|
local discr = b*b - 4*a*c
|
|
if discr < 0 then return false end
|
|
|
|
discr = math_sqrt(discr)
|
|
local s1,s2 = discr-b, -discr-b
|
|
if s1 < 0 then -- first solution is off the ray
|
|
return s2 >= 0, s2/(2*a)
|
|
elseif s2 < 0 then -- second solution is off the ray
|
|
return s1 >= 0, s1/(2*a)
|
|
end
|
|
-- both solutions on the ray
|
|
return true, math_min(s1,s2)/(2*a)
|
|
end
|
|
|
|
-- point shape intersects ray if it lies on the ray
|
|
function PointShape:intersectsRay(x,y,dx,dy)
|
|
local px,py = self._pos.x-x, self._pos.y-y
|
|
local t = vector.dot(px,py, dx,dy) / vector.len2(dx,dy)
|
|
return t >= 0, t
|
|
end
|
|
|
|
--
|
|
-- auxiliary
|
|
--
|
|
function ConvexPolygonShape:center()
|
|
return self._polygon.centroid.x, self._polygon.centroid.y
|
|
end
|
|
|
|
function ConcavePolygonShape:center()
|
|
return self._polygon.centroid.x, self._polygon.centroid.y
|
|
end
|
|
|
|
function CircleShape:center()
|
|
return self._center.x, self._center.y
|
|
end
|
|
|
|
function PointShape:center()
|
|
return self._pos.x, self._pos.y
|
|
end
|
|
|
|
function ConvexPolygonShape:outcircle()
|
|
local cx,cy = self:center()
|
|
return cx,cy, self._polygon._radius
|
|
end
|
|
|
|
function ConcavePolygonShape:outcircle()
|
|
local cx,cy = self:center()
|
|
return cx,cy, self._polygon._radius
|
|
end
|
|
|
|
function CircleShape:outcircle()
|
|
local cx,cy = self:center()
|
|
return cx,cy, self._radius
|
|
end
|
|
|
|
function PointShape:outcircle()
|
|
return self._pos.x, self._pos.y, 0
|
|
end
|
|
|
|
function ConvexPolygonShape:bbox()
|
|
return self._polygon:getBBox()
|
|
end
|
|
|
|
function ConcavePolygonShape:bbox()
|
|
return self._polygon:getBBox()
|
|
end
|
|
|
|
function CircleShape:bbox()
|
|
local cx,cy = self:center()
|
|
local r = self._radius
|
|
return cx-r,cy-r, cx+r,cy+r
|
|
end
|
|
|
|
function PointShape:bbox()
|
|
local x,y = self:center()
|
|
return x,y,x,y
|
|
end
|
|
|
|
|
|
function ConvexPolygonShape:move(x,y)
|
|
self._polygon:move(x,y)
|
|
end
|
|
|
|
function ConcavePolygonShape:move(x,y)
|
|
self._polygon:move(x,y)
|
|
for _,p in ipairs(self._shapes) do
|
|
p:move(x,y)
|
|
end
|
|
end
|
|
|
|
function CircleShape:move(x,y)
|
|
self._center.x = self._center.x + x
|
|
self._center.y = self._center.y + y
|
|
end
|
|
|
|
function PointShape:move(x,y)
|
|
self._pos.x = self._pos.x + x
|
|
self._pos.y = self._pos.y + y
|
|
end
|
|
|
|
|
|
function ConcavePolygonShape:rotate(angle,cx,cy)
|
|
Shape.rotate(self, angle)
|
|
if not (cx and cy) then
|
|
cx,cy = self:center()
|
|
end
|
|
self._polygon:rotate(angle,cx,cy)
|
|
for _,p in ipairs(self._shapes) do
|
|
p:rotate(angle, cx,cy)
|
|
end
|
|
end
|
|
|
|
function ConvexPolygonShape:rotate(angle, cx,cy)
|
|
Shape.rotate(self, angle)
|
|
self._polygon:rotate(angle, cx, cy)
|
|
end
|
|
|
|
function CircleShape:rotate(angle, cx,cy)
|
|
Shape.rotate(self, angle)
|
|
if not (cx and cy) then return end
|
|
self._center.x,self._center.y = vector.add(cx,cy, vector.rotate(angle, self._center.x-cx, self._center.y-cy))
|
|
end
|
|
|
|
function PointShape:rotate(angle, cx,cy)
|
|
Shape.rotate(self, angle)
|
|
if not (cx and cy) then return end
|
|
self._pos.x,self._pos.y = vector.add(cx,cy, vector.rotate(angle, self._pos.x-cx, self._pos.y-cy))
|
|
end
|
|
|
|
|
|
function ConvexPolygonShape:draw(mode)
|
|
local mode = mode or 'line'
|
|
love.graphics.polygon(mode, self._polygon:unpack())
|
|
end
|
|
|
|
function ConcavePolygonShape:draw(mode)
|
|
local mode = mode or 'line'
|
|
if mode == 'line' then
|
|
love.graphics.polygon('line', self._polygon:unpack())
|
|
else
|
|
for _,p in ipairs(self._shapes) do
|
|
love.graphics.polygon(mode, p._polygon:unpack())
|
|
end
|
|
end
|
|
end
|
|
|
|
function CircleShape:draw(mode, segments)
|
|
love.graphics.circle(mode or 'line', self:outcircle())
|
|
end
|
|
|
|
function PointShape:draw()
|
|
love.graphics.point(self:center())
|
|
end
|
|
|
|
|
|
Shape = common.class('Shape', Shape)
|
|
ConvexPolygonShape = common.class('ConvexPolygonShape', ConvexPolygonShape, Shape)
|
|
ConcavePolygonShape = common.class('ConcavePolygonShape', ConcavePolygonShape, Shape)
|
|
CircleShape = common.class('CircleShape', CircleShape, Shape)
|
|
PointShape = common.class('PointShape', PointShape, Shape)
|
|
|
|
local function newPolygonShape(polygon, ...)
|
|
-- create from coordinates if needed
|
|
if type(polygon) == "number" then
|
|
polygon = common.instance(Polygon, polygon, ...)
|
|
else
|
|
polygon = polygon:clone()
|
|
end
|
|
|
|
if polygon:isConvex() then
|
|
return common.instance(ConvexPolygonShape, polygon)
|
|
end
|
|
return common.instance(ConcavePolygonShape, polygon)
|
|
end
|
|
|
|
local function newCircleShape(...)
|
|
return common.instance(CircleShape, ...)
|
|
end
|
|
|
|
local function newPointShape(...)
|
|
return common.instance(PointShape, ...)
|
|
end
|
|
|
|
return {
|
|
ConcavePolygonShape = ConcavePolygonShape,
|
|
ConvexPolygonShape = ConvexPolygonShape,
|
|
CircleShape = CircleShape,
|
|
PointShape = PointShape,
|
|
newPolygonShape = newPolygonShape,
|
|
newCircleShape = newCircleShape,
|
|
newPointShape = newPointShape,
|
|
}
|
|
|