diff --git a/doc.lua b/doc.lua index 5c4fc7d..0282058 100644 --- a/doc.lua +++ b/doc.lua @@ -4,32 +4,32 @@ Module { name = "hump.gamestate", long = [===[ A gamestate encapsulates independent data an behaviour into a single entity. - A typical game could consist of a {** menu-state}, a {** level-state} and a {** game-over-state}.]===], + A typical game could consist of a {*menu-state}, a {*level-state} and a {*game-over-state}.]===], Section { name = "callbacks", title = "Gamestate Callbacks", content = [===[ - A gamestate can define (nearly) all callbacks that LÖVE defines. In addition, + A gamestate can define (nearly) all callbacks that LÖVE defines. In addition, there are callbacks for entering and leaving a state.: [| - {# init()} | Called once before entering the state. See {# switch()}. - {# enter(previous, ...)} | Called when entering the state. See {# switch()}. - {# leave()} | Called when leaving a state. See {# switch()}. - {# update()} | Update the game state. Called every frame. - {# draw()} | Draw on the screen. Called every frame. - {# focus()} | Called if the window gets or looses focus. - {# keypressed()} | Triggered when a key is pressed. - {# keyreleased()} | Triggered when a key is released. - {# mousepressed()} | Triggered when a mouse button is pressed. - {# mousereleased()} | Triggered when a mouse button is released. - {# joystickpressed()} | Triggered when a joystick button is pressed. - {# joystickreleased()} | Triggered when a joystick button is released. - {# quit()} | Called on quitting the game. Only called on the active gamestate. - |] + {#init()} :Called once before entering the state. See {#switch()}. + {#enter(previous, ...)} :Called when entering the state. See {#switch()}. + {#leave()} :Called when leaving a state. See {#switch()}. + {#update()} :Update the game state. Called every frame. + {#draw()} :Draw on the screen. Called every frame. + {#focus()} :Called if the window gets or looses focus. + {#keypressed()} :Triggered when a key is pressed. + {#keyreleased()} :Triggered when a key is released. + {#mousepressed()} :Triggered when a mouse button is pressed. + {#mousereleased()} :Triggered when a mouse button is released. + {#joystickpressed()} :Triggered when a joystick button is pressed. + {#joystickreleased()} :Triggered when a joystick button is released. + {#quit()} :Called on quitting the game. Only called on the active gamestate. + ] - When using {# registerEvents()}, all these callbacks will receive the same - arguments as the [[http://love2d.org/wiki/love|LÖVE callbacks]] do.]===], + When using {#registerEvents()}, all these callbacks will receive the same + arguments as the [^http://love2d.org/wiki/love LÖVE callbacks] do.]===], example = [===[ menu = Gamestate.new() function menu:init() -- run only once @@ -73,7 +73,7 @@ end]===] Function { name = "new", short = "Create a new gamestate.", - long = "Declare a new gamestate. A gamestate can define several [[callbacks]]", + long = "Declare a new gamestate. A gamestate can define several [^#{{MODULE}}-callbacks callbacks].", params = {}, returns = { {"Gamestate", "The new gamestate."} @@ -86,9 +86,9 @@ end]===] long = [===[ Switch to a gamestate, with any additional arguments passed to the new state. - Switching a gamestate will call the leave() callback on the current gamestate, - replace the current gamestate with to, call the init() function if the state - was not yet inialized and finally call enter(old_state, ...) on the new gamestate.]===], + Switching a gamestate will call the {#leave()} callback on the current gamestate, + replace the current gamestate with to, call the {#init()} function if the state + was not yet inialized and finally call {#enter(old_state, ...)} on the new gamestate.]===], params = { {"Gamestate", "to", "Target gamestate."}, {"mixed", "...", "Additional arguments to pass to to:enter()."} @@ -124,11 +124,11 @@ end]===] "Inform current gamestate of a quit event.", }, long = [===[ - Calls the corresponding function on the current gamestate (see [[callbacks]]). + Calls the corresponding function on the current gamestate (see [^#{{MODULE}}-callbacks callbacks]). Only needed when not using registerEvents().]===], params = { - {"mixed", "...", "Arguments to pass to the corresponding [[callbacks|callback]]."}, + {"mixed", "...", "Arguments to pass to the corresponding [^#{{MODULE}}-callbacks callback]."}, }, returns = { {"mixed", "The results of the callback function."}, @@ -154,13 +154,13 @@ end]===], Register all love callbacks to call Gamestate.update(), Gamestate.draw(), etc. automatically. This is by done by overwriting the love callbacks, e.g.: - {## local old_update = love.update + {%local old_update = love.update function love.update(dt) old_update(dt) Gamestate.current:update(dt) end} -{!! Note:} Only works when called in {# love.load()} or any other function that is executed + {!Note:} Only works when called in {#love.load()} or any other function that is executed after the whole file is loaded.]===], params = {}, returns = {}, @@ -187,16 +187,16 @@ Module { name = "hump.timer", Function { name = "add", short = "Add a timed function.", long = [===[ - Add a timed function. The function will be executed after {# delay} seconds + Add a timed function. The function will be executed after {#delay} seconds have elapsed, given that update() is called every frame. Note that there is no guarantee that the delay will not be exceeded, it is - only guaranteed that the function will not be executed {** before} the delay + only guaranteed that the function will not be executed {*before} the delay has passed. It is an error to schedule a function again if it is not yet finished or canceled. - {# func} will receive itself as only parameter. This is useful to implement + {#func} will receive itself as only parameter. This is useful to implement periodic behavior (see the example).]===], params = { {"number", "delay", "Number of seconds the function will be delayed."}, @@ -219,9 +219,9 @@ Timer.add(1, function(func) print("foo") Timer.add(1, func) end)]===] Function { name = "addPeriodic", short = "Add a periodic function.", long = [===[ - Add a function that will be called {# count} times every {# delay} seconds. + Add a function that will be called {#count} times every {#delay} seconds. - If {# count} is omitted, the function will be called until it returns {# false} + If {#count} is omitted, the function will be called until it returns {#false} or clear() is called.]===], params = { {"number", "delay", "Number of seconds between two consecutive function calls."}, @@ -246,9 +246,9 @@ end)]===], short = "Cancel a scheduled function.", long = [===[Prevent a timer from being executed in the future. - {** Always} use the function handle returned by add()/addPeriodic() to cancel a timer. + {*Always} use the function handle returned by add()/addPeriodic() to cancel a timer. - {** Never} use this in another timer.]===], + {*Never} use this in another timer.]===], params = { {"function", "func", "The function to be canceled."}, }, @@ -292,16 +292,16 @@ end]===], depending on how much time has passed. The wrapper will have the prototype: - {## function wrapper(dt, ...) } - where {# dt} is the time that has passed since the last call of the wrapper - and {# ...} are arguments passed to the interpolating function. It will return + {%function wrapper(dt, ...) } + where {#dt} is the time that has passed since the last call of the wrapper + and {#...} are arguments passed to the interpolating function. It will return whatever the interpolating functions returns if the interpolation is not yet finished or nil if the interpolation is done. The prototype of the interpolating function is: - {## function interpolator(fraction, ...) } - where {# fraction} is a number between 0 and 1 depending on how much time has - passed and {# ...} are additional arguments supplied to the wrapper.]===], + {%function interpolator(fraction, ...) } + where {#fraction} is a number between 0 and 1 depending on how much time has + passed and {#...} are additional arguments supplied to the wrapper.]===], params = { {"number", "length", "Interpolation length in seconds."}, {"function", "func", "Interpolating function."}, @@ -326,10 +326,10 @@ end]===], interpolating function. The function prototypes are the same as with Interpolator(): - {## function wrapper(dt, ...) } - {## function oscillator(fraction, ...) } + {%function wrapper(dt, ...) } + {%function oscillator(fraction, ...) } - As with Interpolator, the wrapper will return whatever {# oscillator()} returns.]===], + As with Interpolator, the wrapper will return whatever {#oscillator()} returns.]===], params = { {"number", "length", "Length of one interpolation period."}, {"function", "func", "Oscillating function."}, @@ -355,33 +355,33 @@ end]===], Module { name = "hump.vector", title = "vector", - short = "2D vector math", + short = "2D vector math.", long = [===[ A handy 2D vector class providing most of the things you do with vectors. - You can access the individual coordinates by using {# vec.x} and {# vec.y}.]===], + You can access the individual coordinates by using {#vec.x} and {#vec.y}.]===], Section { name = "operators", title = "Arithmetics and relations", content = [===[ - Vector arithmetic is implemented by using {# __add}, {# __mul} and other metamethods: + Vector arithmetic is implemented by using {#__add}, {#__mul} and other metamethods: [| - {# vector + vector = vector} | Component wise sum. - {# vector - vector = vector} | Component wise difference. - {# vector * vector = number} | [[http://en.wikipedia.org/wiki/Dot_product|Dot product]]. - {# number * vector = vector} | Vector scaling ([[http://en.wikipedia.org/wiki/Scalar_multiplication|scalar multiplication]]). - {# vector * number = vector} | Vector scaling. - {# vector / number = vector} | Vector scaling. - |] + {#vector + vector = vector} :Component wise sum. + {#vector - vector = vector} :Component wise difference. + {#vector * vector = number} :[^http://en.wikipedia.org/wiki/Dot_product Dot product]. + {#number * vector = vector} :Vector scaling ([^http://en.wikipedia.org/wiki/Scalar_multiplication scalar multiplication]). + {#vector * number = vector} :Vector scaling. + {#vector / number = vector} :Vector scaling. + ] Relational operators are defined, too: [| - a == b | {# true}, if {# a.x == b.x} and {# a.y == b.y}. - a <= b | {# true}, if {# a.x <= b.x} and {# a.y <= b.y}. - a < b | Lexical sort: {# true}, if {# a.x < b.x} or {# a.x == b.x} and {# a.y < b.y}. - |]]===], + a == b :{#true}, if {#a.x == b.x} and {#a.y == b.y}. + a <= b :{#true}, if {#a.x <= b.x} and {#a.y <= b.y}. + a < b :Lexical sort: {#true}, if {#a.x < b.x} or {#a.x == b.x} and {#a.y < b.y}. + ]]===], example = [===[ -- acceleration, player.velocity and player.position are vectors acceleration = vector(0,-9) @@ -413,7 +413,7 @@ a = vector(10,10)]===], {"mixed", "v", "The variable to test."} }, returns = { - {"boolean", "{# true} if {# v} is a vector, {# false} otherwise"} + {"boolean", "{#true} if {#v} is a vector, {#false} otherwise"} }, example = [===[ if not vector.isvector(v) then @@ -427,7 +427,7 @@ end]===], Copy a vector. Simply assigning a vector a vector to a variable will create a reference, so when modifying the vector referenced by the new variable would also change the old one: - {## a = vector(1,1) -- create vector + {%a = vector(1,1) -- create vector b = a -- b references a c = a:clone() -- c is a copy of a b.x = 0 -- changes a,b and c @@ -455,7 +455,7 @@ print(a,b,c) -- prints '(1,0), (1,0), (1,1)'}]===], Function { name = "vector:permul", short = "Per element multiplication.", long = [===[ - Multiplies vectors coordinate wise, i.e. {# result = vector(a.x * b.x, a.y * b.y)}. + Multiplies vectors coordinate wise, i.e. {#result = vector(a.x * b.x, a.y * b.y)}. This does not change either argument vectors, but creates a new one.]===], params = { @@ -469,7 +469,7 @@ print(a,b,c) -- prints '(1,0), (1,0), (1,1)'}]===], Function { name = "vector:len", short = "Get length.", - long = "Get length of a vector, i.e. {# math.sqrt(vec.x * vec.x + vec.y * vec.y)}.", + long = "Get length of a vector, i.e. {#math.sqrt(vec.x * vec.x + vec.y * vec.y)}.", params = {}, returns = { {"number", "Length of the vector."} @@ -479,7 +479,7 @@ print(a,b,c) -- prints '(1,0), (1,0), (1,1)'}]===], Function { name = "vector:len2", short = "Get squared length.", - long = "Get squared length of a vector, i.e. {# vec.x * vec.x + vec.y * vec.y}.", + long = "Get squared length of a vector, i.e. {#vec.x * vec.x + vec.y * vec.y}.", params = {}, returns = { {"number", "Squared length of the vector."} @@ -497,7 +497,7 @@ end]===], Function { name = "vector:dist", short = "Distance to other vector.", - long = "Get distance of two vectors. The same as {# (a - b):len()}.", + long = "Get distance of two vectors. The same as {#(a - b):len()}.", params = { {"vector", "other", "Other vector to measure the distance to."}, }, @@ -536,7 +536,7 @@ end]===], Normalize a vector, i.e. make the vector unit length. Great to use on intermediate results. - {!! This modifies the vector. If in doubt, use {# vector:normalized()}.}]===], + {!This modifies the vector. If in doubt, use {#vector:normalized()}.}]===], params = {}, returns = { {"vector", "Itself - the normalized vector"} @@ -551,7 +551,7 @@ end]===], This does not change the input vector, but creates a new vector.]===], params = { - {"number", "phi", "Rotation angle in [[http://en.wikipedia.org/wiki/Radians|radians]]."} + {"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."} }, returns = { {"vector", "The rotated vector"} @@ -573,9 +573,9 @@ end]===], long = [===[ Rotate a vector in-place. Great to use on intermediate results. - {!! This modifies the vector. If in doubt, use {# vector:rotate()}}]===], + {!This modifies the vector. If in doubt, use {#vector:rotate()}}]===], params = { - {"number", "phi", "Rotation angle in [[http://en.wikipedia.org/wiki/Radians|radians]]."} + {"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."} }, returns = { {"vector", "Itself - the rotated vector"} @@ -589,7 +589,7 @@ spawner.direction:rotate_inplace(dt)]===], short = "Get perpendicular vector.", long = [===[ Quick rotation by 90°. Creates a new vector. The same as (but faster): - {## vec:rotate(math.pi/2)}]===], + {%vec:rotate(math.pi/2)}]===], params = {}, returns = { {"vector", "A vector perpendicular to the input vector"} @@ -648,6 +648,252 @@ spawner.direction:rotate_inplace(dt)]===], }, } + +Module { name = "hump.vector-light", + title = "vector-light", + short = "Lightweight 2D vector math.", + long = [===[ + An table-free version of {#hump.vector}. Instead of a vector class, {#hump.vector-light} provides functions that operate on numbers. + + Using this module instead of {#vector} might result in faster code, but does so at the expense of readability. Unless you are sure that it causes a significant performance penalty, I recommend to use {#hump.vector}.]===], + + + Function { name = "str", + short = "String representation.", + long = "Transforms a vector to a string of the form {#(x,y)}.", + params = { + {"numbers", "x,y", "The vector"} + }, + returns = { + {"string", "The string representation"} + }, + example = { + "print(vector.str(love.mouse.getPosition()))", + } + }, + + Function { name = { "mul", "div" }, + short = { + "Product of a vector and a scalar.", + "Product of a vector and the inverse of a scalar.", + }, + long = "Computes {#x*s, y*s} and {#x/s, y/s}. The order of arguments is chosen so that you can chain multiple operations (see example).", + params = { + {"number", "s", "The scalar."}, + {"numbers", "x,y", "The vector."}, + }, + returns = { + {"numbers", "The result of the operation."} + }, + example = { + "velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy))", + "x,y = vec.div(self.zoom, x-w/2, y-h/2)", + }, + }, + + Function { name = { "add", "sub" }, + short = { + "Sum of two vectors.", + "Difference of two vectors.", + }, + long = "Computes the sum/difference of vectors. Same as {#x1+x2, y1+y2} or {#x1-x2, y1-y2} respectively. Meant to be used in conjunction with other functions.", + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"numbers", "The result of the operation."} + }, + example = { + "player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy))", + "dx,dy = vector.sub(400,300, love.mouse.getPosition())", + }, + }, + + Function { name = "permul", + short = "Per element multiplication.", + long = [===[ + Multiplies vectors coordinate wise, i.e. {#x1*x2, y1*y2)}.]===], + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"numbers", "The result of the operation."} + }, + example = "x,y = vector.permul(x,y, 1,1.5)", + }, + + Function { name = "dot", + short = "[^http://en.wikipedia.org/wiki/Dot_product Dot product]", + long = "Computes the [^http://en.wikipedia.org/wiki/Dot_product dot product] of two vectors, {#x1*x2 + y1*y2}.", + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"number", "The dot product."} + }, + example = "cosphi = vector.dot(rx,ry, vx,vy)" + }, + + Function { name = {"det", "cross"}, + short = { "Cross product", "Cross product", }, + long = "Computes the cross product/determinant of two vectors, {#x1*y2 - y1*x2}.", + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"number", "The cross product."} + }, + example = "parallelogram_area = vector.det(ax,ay, bx,by)" + }, + + Function { name = {"eq", "le", "lt"}, + short = { "Equality.", "Partial lexical order.", "Strict lexical order." }, + long = [===[Compares two vectors according to [| + {#vector.eq(x1,y1, x2,y2)} :{#x1 == x2 and y1 == y2} + {#vector.le(x1,y1, x2,y2)} :{#x1 <= x2 and y1 <= y2} + {#vector.lt(x1,y1, x2,y2)} :{#x1 < x2 or (x1 == x2) and y1 <= y2} + ] + ]===], + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"boolean", "The result of the operation."} + }, + example = "..." + }, + + Function { name = "len", + short = "Get length.", + long = "Get length of a vector, i.e. {#math.sqrt(x*x + y*y)}.", + params = { + {"numbers", "x,y", "The vector."} + }, + returns = { + {"number", "Length of the vector."} + }, + example = "distance = vector.len(love.mouse.getPosition())", + }, + + Function { name = "len2", + short = "Get squared length.", + long = "Get squared length of a vector, i.e. {#x*x + y*y}.", + params = { + {"numbers", "x,y", "The vector."} + }, + returns = { + {"number", "Squared length of the vector."} + }, + example = [===[ +-- get closest vertex to a given vector +closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y) +for i = 2,#vertices do + local temp = vector.len2(px-vertices[i].x, py-vertices[i].y) + if temp < dsq then + closest, dsq = vertices[i], temp + end +end]===], + }, + + Function { name = "dist", + short = "Distance of two points.", + long = "Get distance of two points. The same as {#vector.len(x1-x2, y1-y2)}.", + params = { + {"numbers", "x1,y1", "First vector."}, + {"numbers", "x2,y2", "Second vector."}, + }, + returns = { + {"number", "The distance of the points."} + }, + example = [===[ +-- get closest vertex to a given vector +-- slightly slower than the example using len2() +closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y) +for i = 2,#vertices do + local temp = vector.dist(px,py, vertices[i].x,vertices[i].y) + if temp < dist then + closest, dist = vertices[i], temp + end +end]===], + }, + + Function { name = "normalize", + short = "Normalize vector.", + long = [===[ + Get normalized vector, i.e. a vector with the same direction as the input + vector, but with length 1.]===], + params = { + {"numbers", "x,y", "The vector."}, + }, + returns = { + {"numbers", "Vector with same direction as the input vector, but length 1."} + }, + example = "dx,dy = vector.normalize(vx,vy)" + }, + + Function { name = "rotate", + short = "Rotate vector.", + long = "Get a rotated vector.", + params = { + {"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."}, + {"numbers", "x,y", "The vector."}, + }, + returns = { + {"numbers", "The rotated vector"} + }, + example = [===[ +-- approximate a circle +circle = {} +for i = 1,30 do + local phi = 2 * math.pi * i / 30 + circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1) +end]===], + }, + + Function { name = "perpendicular", + short = "Get perpendicular vector.", + long = "Quick rotation by 90°. The same as (but faster) {%vector.rotate(math.pi/2, x,y)}", + params = { + {"numbers", "x,y", "The vector."}, + }, + returns = { + {"numbers", "A vector perpendicular to the input vector"} + }, + example = "nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay))", + }, + + Function { name = "project", + short = "Project projection onto another vector.", + long = "Project vector onto another vector.", + params = { + {"numbers", "x,y", "The vector to project."}, + {"numbers", "u,v", "The vector to project onto."}, + }, + returns = { + {"numbers", "The projected vector."} + }, + example = "vx_p,vy_p = vector.project(vx,vy, ax,ay)", + }, + + Function { name = "mirror", + short = "Mirrors vector on other vector.", + long = "Mirrors vector on the axis defined by the other vector.", + params = { + {"numbers", "x,y", "The vector to mirror."}, + {"numbers", "u,v", "The vector defining the axis."}, + }, + returns = { + {"numbers", "The mirrored vector."} + }, + example = "vx,vy = vector.mirror(vx,vy, surface.x,surface.y)", + }, +} + Module { name = "hump.class", title = "Class", short = "Class-based object orientated programming for Lua", @@ -660,13 +906,13 @@ Module { name = "hump.class", The constructor will receive the newly create object as first argument. - You can check if an object is an instance of a class using {# object:is_a()}. + You can check if an object is an instance of a class using {#object:is_a()}. The name of the variable that holds the module can be used as a shortcut to - {# new()} (see example).]===], + {#new()} (see example).]===], params = { table_argument = true, - {"function", "constructor", "Class constructor. Can be accessed with {# theclass.construct(object, ...)}", optional = true}, - {"string", "the_name", "Class name (used only to make the class compliant to {# tostring()}.", name = "name", optional = true}, + {"function", "constructor", "Class constructor. Can be accessed with {#theclass.construct(object, ...)}", optional = true}, + {"string", "the_name", "Class name (used only to make the class compliant to {#tostring()}.", name = "name", optional = true}, {"class or table of classes", "super", "Classes to inherit from. Can either be a single class or a table of classes", name = "inherits", optional = true}, }, returns = { @@ -740,7 +986,7 @@ instance:bar() -- prints 'bar' Derived classes use this function their constructors to initialize the parent class(es) portions of the object.]===], params = { - {"Object", "object", "The object. Usually {# self}."}, + {"Object", "object", "The object. Usually {#self}."}, {"mixed", "...", "Arguments to pass to the constructor"}, }, returns = { @@ -810,14 +1056,14 @@ end} variables over to the subclass. The Lua rules for copying apply (i.e. tables are referenced, functions and primitive types are copied by value). - {!! Be careful with changing table values in a subclass: This will change the + {!Be careful with changing table values in a subclass: This will change the value in the parent class too.} If more than one parent class is specified, inherit from all of these, in order of occurrence. That means that when two parent classes define the same method, the one from the first class will be inherited. - Note: {# class:inherit()} doesn't actually care if the arguments supplied are + Note: {#class:inherit()} doesn't actually care if the arguments supplied are hump classes. Just any table will work.]===], params = { {"tables", "...", "Parent classes to inherit from"} @@ -859,10 +1105,10 @@ end short = "Test object's type.", long = "Tests whether an object is an instance of a class.", params = { - {"class", "cls", "Class to test. Note: this is the class itself, {** not} the name of the class."} + {"class", "cls", "Class to test. Note: this is the class itself, {*not} the name of the class."} }, returns = { - {"Boolean", "{# true} if the object is an instance of the class, {# false} otherwise"} + {"Boolean", "{#true} if the object is an instance of the class, {#false} otherwise"} }, example = [===[ Class = require 'hump.class' @@ -886,10 +1132,10 @@ print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true true true Section { name = "caveats", title = "Caveats", content = [===[ - Be careful when using metamethods like {# __add} or {# __mul}: If subclass + Be careful when using metamethods like {#__add} or {#__mul}: If subclass inherits those methods from a superclass, but does not overwrite them, the result of the operation may be of the type superclass. Consider the following: - {## Class = require 'hump.class' + {%Class = require 'hump.class' A = Class{function(self, x) self.x = x end} function A:__add(other) return A(self.x + other.x) end @@ -904,11 +1150,11 @@ result = one + two result:show() -- prints "A: 4" result:foo() -- error: method does not exist} - Note that while you can define the {# __index} metamethod of the class, this + Note that while you can define the {#__index} metamethod of the class, this is not a good idea: It will break the class. To add a custom __index metamethod without breaking the class system, you have to use rawget(). But beware that this won't affect subclasses: - {## Class = require 'hump.class' + {%Class = require 'hump.class' A = Class{} function A:foo() print('bar') end @@ -929,11 +1175,11 @@ instance:foo() -- prints only foo}]===], Module { name = "hump.camera", title = "Camera", - short = "A camera for LÖVE", + short = "A camera for LÖVE", long = [===[ - {!! Depends on hump.vector} + {!Depends on hump.vector-light} - A camera utility for LÖVE. A camera can "look" at a position. It can zoom in and + A camera utility for LÖVE. A camera can "look" at a position. It can zoom in and out and it can rotate it's view. In the background, this is done by actually moving, scaling and rotating everything in the game world. But don't worry about that.]===], @@ -942,13 +1188,13 @@ Module { name = "hump.camera", short = "Create a new camera object.", long = [===[ Creates a new camera object. You can access the camera position using - {# camera.pos}, the zoom using {# camera.zoom} and the rotation using - {# camera.rot}. + {#camera.x, camera.y}, the zoom using {#camera.zoom} and the rotation using + {#camera.rot}. - The module variable name can be used at a shortcut to {# new()}.]===], + The module variable name can be used at a shortcut to {#new()}.]===], params = { - {"vector", "pos", "Point for the camera to look at.", default = "screen center"}, + {"numbers", "x,y", "Point for the camera to look at.", default = "screen center"}, {"number", "zoom", "Camera zoom.", default = "1"}, {"number", "rot", "Camera rotation in radians.", default = "0"}, }, @@ -959,20 +1205,19 @@ Module { name = "hump.camera", example = [===[ camera = require 'hump.camera' -vector = require 'hump.vector' -- camera looking at (100,100) with zoom 2 and rotated by 45 degrees -cam = camera(vector(100,100), 2, math.pi/2) +cam = camera(100,100, 2, math.pi/2) ]===] }, Function { name = "camera:rotate", short = "Rotate camera object.", long = [===[ - Rotate the camera {** by} some angle. To {** set} the angle use - {# camera.rot = new_angle}. + Rotate the camera {*by} some angle. To {*set} the angle use + {#camera.rot = new_angle}. - This function is shortcut to {# camera.rot = camera.rot + angle}.]===], + This function is shortcut to {#camera.rot = camera.rot + angle}.]===], params = { {"number", "angle", "Rotation angle in radians"} @@ -984,21 +1229,19 @@ cam = camera(vector(100,100), 2, math.pi/2) example = { "function love.update(dt)\n camera:rotate(dt)\nend", - "function love.update(dt)\n camera:rotate(dt):move(dt)\nend" + "function love.update(dt)\n camera:rotate(dt):move(dt,dt)\nend" }, }, Function { name = "camera:move", short = "Move camera object.", long = [===[ - {** Move} the camera {** by} some vector. To {** set} the position, use - {# camera.pos = some_vector} or {# camera.pos.x, camera.pos.y = new_x, new_y}. + {*Move} the camera {*by} some vector. To {*set} the position, use {#camera.x,camera.y = new_x,new_y}. - This function is shortcut to {# camera.pos = camera.pos + v}.]===], + This function is shortcut to {#camera.x,camera.y = camera.x+dx, camera.y+dy}.]===], params = { - { {"vector", "v", "Direction to move the camera."} }, - { {"numbers", "x, y", "Direction to move the camera."} }, + {"numbers", "dx,dy", "Direction to move the camera."}, }, returns = { @@ -1006,7 +1249,6 @@ cam = camera(vector(100,100), 2, math.pi/2) }, example = { - "function love.update(dt)\n camera:move(dt * velocity)\nend", "function love.update(dt)\n camera:move(dt * 5, dt * 6):rotate(dt)\nend" }, }, @@ -1017,7 +1259,7 @@ cam = camera(vector(100,100), 2, math.pi/2) Start looking through the camera. Apply camera transformations, i.e. move, scale and rotate everything until - {# camera:detach()} as if looking through the camera.]===], + {#camera:detach()} as if looking through the camera.]===], params = {}, returns = {}, @@ -1052,8 +1294,8 @@ end]===] Function { name = "camera:draw", short = "Attach, draw and detach.", long = [===[ - Wrap a function between a {# camera:attach()}/{# camera:detach()} pair: - {## cam:attach() + Wrap a function between a {#camera:attach()}/{#camera:detach()} pair: + {%cam:attach() func() cam:detach()}]===], @@ -1083,7 +1325,7 @@ end]===] defines a coordinate system. A point now has two sets of coordinates: One defines where the point is to be found in the game world, and the other describes the position on the computer screen. The first set of coordinates - is called {** world coordinates}, the second one {** camera coordinates}. + is called {*world coordinates}, the second one {*camera coordinates}. Sometimes it is needed to convert between the two coordinate systems, for example to get the position of a mouse click in the game world in a strategy @@ -1092,35 +1334,34 @@ end]===] These two functions convert a point between these two coordinate systems.]===], params = { - { {"vector", "v", "Point to transform."} }, - { {"numbers", "x, y", "Point to transform."} }, + {"numbers", "x, y", "Point to transform."}, }, returns = { - {"vector", "Transformed point."}, + {"numbers", "Transformed point."}, }, example = { [===[ -target = camera:worldCoords( vector(love.mouse.getPosition()) ) -selectedUnit:plotPath(target) +x,y = camera:worldCoords(love.mouse.getPosition()) +selectedUnit:plotPath(x,y) ]===], [===[ -pos = cam:toCameraCoords(player.pos) -love.graphics.line(pos.x, pos.y, love.mouse.getPosition()) +x,y = cam:toCameraCoords(player.pos) +love.graphics.line(x, y, love.mouse.getPosition()) ]===] }, }, Function { name = "camera:mousepos", short = "Get mouse position in world coordinates.", - long = "Shortcut to {# camera:worldCoords(vector(love.mouse.getPosition()))}.", + long = "Shortcut to {#camera:worldCoords(vector(love.mouse.getPosition()))}.", params = {}, returns = { - {"vector", "Mouse position in world coordinates."}, + {"numbers", "Mouse position in world coordinates."}, }, example = [===[ -target = camera:mousepos() -selectedUnit:plotPath(target) +x,y = camera:mousepos() +selectedUnit:plotPath(x,y) ]===], }, } @@ -1130,11 +1371,11 @@ Module { name = "hump.ringbuffer", short = "A data structure that wraps around itself.", long = [===[ A ring-buffer is a circular array: It does not have a first nor a last item, - but it has a {** selected} or {** current} element. + but it has a {*selected} or {*current} element. - A ring-buffer can be used to implement {** Tomb Raider} style inventories, looping + A ring-buffer can be used to implement {*Tomb Raider} style inventories, looping play-lists, recurring dialogs (like a unit's answers when selecting it multiple - times in {** Warcraft}) and generally everything that has a circular or looping + times in {*Warcraft}) and generally everything that has a circular or looping structure.]===], Function { name = "new", diff --git a/index.html b/index.html index e8cd1fb..6e18a19 100644 --- a/index.html +++ b/index.html @@ -1,94 +1,6 @@ - - - - - -hump - LÖVE Helper Utilities for More Productivity - - - - - - - - - - -
-

Introduction^ top

-
-

Helper Utilities for a Multitude of Problems is a set of lightweight - helpers for the awesome - LÖVE Engine.

- -

It features -

- -

hump differs from other libraries in that every component is - independent of the remaining ones (apart from camera.lua, which does depends on - vector.lua). hump's footprint is very small and thus should fit nicely - into your projects.

-
-
- - -
-

Documentation^ top

-
-

Below is the documentation of the various modules. You can directly jump to a - module by clicking these:

-
-
hump.gamestate
A gamestate system
-
hump.timer
Delayed function calls and helpers for interpolating functions.
-
hump.vector
2D vector math
-
hump.class
Class-based object orientated programming for Lua
-
hump.camera
A camera for LÖVE
-
hump.ringbuffer
A data structure that wraps around itself.
-
-

hump.gamestate^ top

hump.gamestate = require "Gamestate"
A gamestate encapsulates independent data an behaviour into a single entity.

A typical game could consist of a menu-state, a level-state and a game-over-state.

Module overview

new()
Create a new gamestate.
switch()
Switch to gamestate.
update()
Update current gamestate.
draw()
Draw the current gamestate.
focus()
Inform current gamestate of a focus event.
keypressed()
Inform current gamestate of a keypressed event.
keyreleased()
Inform current gamestate of a keyreleased event.
mousepressed()
Inform current gamestate of a mousepressed event.
mousereleased()
Inform current gamestate of a mousereleased event.
joystickpressed()
Inform current gamestate of a joystickpressed event.
joystickreleased()
Inform current gamestate of a joystickreleased event.
quit()
Inform current gamestate of a quit event.
registerEvents()
Automatically do all of the above when needed.

Gamestate Callbacks

A gamestate can define (nearly) all callbacks that LÖVE defines. In addition, - there are callbacks for entering and leaving a state.:

init()
Called once before entering the state. See switch(). -
enter(previous, ...)
Called when entering the state. See switch(). -
leave()
Called when leaving a state. See switch(). -
update()
Update the game state. Called every frame. -
draw()
Draw on the screen. Called every frame. -
focus()
Called if the window gets or looses focus. -
keypressed()
Triggered when a key is pressed. -
keyreleased()
Triggered when a key is released. -
mousepressed()
Triggered when a mouse button is pressed. -
mousereleased()
Triggered when a mouse button is released. -
joystickpressed()
Triggered when a joystick button is pressed. -
joystickreleased()
Triggered when a joystick button is released. -
quit()
Called on quitting the game. Only called on the active gamestate. -

When using registerEvents(), all these callbacks will receive the same - arguments as the LÖVE callbacks do.

Example:
menu = Gamestate.new()
+hump - LÖVE Helper Utilities for More Productivity

Introduction^ top

Helper Utilities for a Multitude of Problems is a set of lightweight helpers for the awesome LÖVE Engine.

It features

  • gamestate.lua: a gamestate system.
  • timer.lua: timed function calling and interpolating functions,
  • vector.lua: a mature vector type,
  • vector-light.lua: lightweight vector math,
  • class.lua: a simple and easy class system,
  • camera.lua: a move-, zoom- and rotatable camera and
  • ringbuffer.lua: a circular container.

hump differs from other libraries in that every component is independent of the remaining ones (apart from camera.lua, which does depends on vector.lua). hump's footprint is very small and thus should fit nicely into your projects.

Documentation^ top

hump.gamestate
A gamestate system
hump.timer
Delayed function calls and helpers for interpolating functions.
hump.vector
2D vector math.
hump.vector-light
Lightweight 2D vector math.
hump.class
Class-based object orientated programming for Lua
hump.camera
A camera for LÖVE
hump.ringbuffer
A data structure that wraps around itself.

hump.gamestate^ top

Gamestate = require "hump.gamestate"

A gamestate encapsulates independent data an behaviour into a single entity.

A typical game could consist of a menu-state, a level-state and a game-over-state.

Module overview

callbacks
Gamestate Callbacks
new()
Create a new gamestate.
switch()
Switch to gamestate.
update()
Update current gamestate.
draw()
Draw the current gamestate.
focus()
Inform current gamestate of a focus event.
keypressed()
Inform current gamestate of a keypressed event.
keyreleased()
Inform current gamestate of a keyreleased event.
mousepressed()
Inform current gamestate of a mousepressed event.
mousereleased()
Inform current gamestate of a mousereleased event.
joystickpressed()
Inform current gamestate of a joystickpressed event.
joystickreleased()
Inform current gamestate of a joystickreleased event.
quit()
Inform current gamestate of a quit event.
registerEvents()
Automatically do all of the above when needed.

Gamestate Callbacks^ top

A gamestate can define (nearly) all callbacks that LÖVE defines. In addition, there are callbacks for entering and leaving a state.:

init()
Called once before entering the state. See switch().
enter(previous, ...)
Called when entering the state. See switch().
leave()
Called when leaving a state. See switch().
update()
Update the game state. Called every frame.
draw()
Draw on the screen. Called every frame.
focus()
Called if the window gets or looses focus.
keypressed()
Triggered when a key is pressed.
keyreleased()
Triggered when a key is released.
mousepressed()
Triggered when a mouse button is pressed.
mousereleased()
Triggered when a mouse button is released.
joystickpressed()
Triggered when a joystick button is pressed.
joystickreleased()
Triggered when a joystick button is released.
quit()
Called on quitting the game. Only called on the active gamestate.

When using registerEvents(), all these callbacks will receive the same arguments as the LÖVE callbacks do.

Example:
menu = Gamestate.new()
 function menu:init() -- run only once
-    self.background = love.graphics.newImage('bg.jpg')
+    self.background = love.graphics.newImage('bg.jpg')
     Buttons.initialize()
 end
 
@@ -106,9 +18,9 @@ function menu:draw()
 end
 
 function menu:keyreleased(key)
-    if key == 'up' then
+    if key == 'up' then
         Buttons.selectPrevious()
-    elseif key == 'down' then
+    elseif key == 'down' then
         Buttons.selectNext()
     elseif
         Buttons.active:onClick()
@@ -119,13 +31,11 @@ function menu:mousereleased(x,y, mouse_btn)
     local button = Buttons.hovered(x,y)
     if button then
         Button.select(button)
-        if mouse_btn == 'l' then
+        if mouse_btn == 'l' then
             button:onClick()
         end
     end
-end

function new()^ top

Declare a new gamestate. A gamestate can define several callbacks

Parameters:
None.
Returns:
Gamestate
The new gamestate.
Example:
menu = Gamestate.new()

function switch(to, ...)^ top

Switch to a gamestate, with any additional arguments passed to the new state.

Switching a gamestate will call the leave() callback on the current gamestate, - replace the current gamestate with to, call the init() function if the state - was not yet inialized and finally call enter(old_state, ...) on the new gamestate.

Parameters:
Gamestate to
Target gamestate.
mixed ...
Additional arguments to pass to to:enter().
Returns:
mixed
The results of to:enter()
Example:
Gamestate.switch(game, level_two)

function update(...)^ top

function draw(...)^ top

function focus(...)^ top

function keypressed(...)^ top

function keyreleased(...)^ top

function mousepressed(...)^ top

function mousereleased(...)^ top

function joystickpressed(...)^ top

function joystickreleased(...)^ top

function quit(...)^ top

Calls the corresponding function on the current gamestate (see callbacks).

Only needed when not using registerEvents().

Parameters:
mixed ...
Arguments to pass to the corresponding callback.
Returns:
mixed
The results of the callback function.
Example:
function love.update(dt)
+end

function new()^ top

Declare a new gamestate. A gamestate can define several callbacks.

Parameters:
None
Returns:
Gamestate

The new gamestate.

Example:
menu = Gamestate.new()

function switch(to, ...)^ top

Switch to a gamestate, with any additional arguments passed to the new state.

Switching a gamestate will call the leave() callback on the current gamestate, replace the current gamestate with to, call the init() function if the state was not yet inialized and finally call enter(old_state, ...) on the new gamestate.

Parameters:
Gamestate to

Target gamestate.

mixed ...

Additional arguments to pass to to:enter().

Returns:
mixed

The results of to:enter()

Example:
Gamestate.switch(game, level_two)

function update(...)^ top

function draw(...)^ top

function focus(...)^ top

function keypressed(...)^ top

function keyreleased(...)^ top

function mousepressed(...)^ top

function mousereleased(...)^ top

function joystickpressed(...)^ top

function joystickreleased(...)^ top

function quit(...)^ top

Calls the corresponding function on the current gamestate (see callbacks).

Only needed when not using registerEvents().

Parameters:
mixed ...

Arguments to pass to the corresponding callback.

Returns:
mixed

The results of the callback function.

Example:
function love.update(dt)
     Gamestate.update(dt)
 end
 
@@ -136,63 +46,31 @@ end
 
 function love.keypressed(key, code)
     Gamestate.keypressed(key, code)
-end

function registerEvents()^ top

Register all love callbacks to call Gamestate.update(), Gamestate.draw(), etc. automatically.

This is by done by overwriting the love callbacks, e.g.: -

local old_update = love.update
-function love.update(dt)
-    old_update(dt)
-    Gamestate.current:update(dt)
-end

Note: Only works when called in love.load() or any other function that is executed -after the whole file is loaded.

Parameters:
None.
Returns:
Nothing.
Example:
function love.load()
+end

function registerEvents()^ top

Register all love callbacks to call Gamestate.update(), Gamestate.draw(), etc. automatically.

This is by done by overwriting the love callbacks, e.g.:

local old_update = love.updatefunction love.update(dt)   old_update(dt)   Gamestate.current:update(dt)end

Note: Only works when called in love.load() or any other function that is executedafter the whole file is loaded.

Parameters:
None
Returns:
Nothing
Example:
function love.load()
     Gamestate.registerEvents()
     Gamestate.switch(menu)
-end
-

hump.timer^ top

hump.timer = require "Timer"
hump.timer provides a simple interface to use delayed functions, i.e. functions - that will be executed after some amount time has passed. For example, you can use - a timer to set the player invincible for a short amount of time.

In addition, the module offers facilities to create functions that interpolate - or oscillate over time. An interpolator could fade the color or a text message, - whereas an oscillator could be used for the movement of foes in a shmup.

Module overview

add()
Add a timed function.
addPeriodic()
Add a periodic function.
cancel()
Cancel a timed function.
clear()
Remove all timed and periodic functions.
update()
Update timed functions.
Interpolator()
Create a new interpolating function.
Oscillator()
Create a new oscillating function.

function add(delay, func)^ top

Add a timed function. The function will be executed after delay seconds - have elapsed, given that update() is called every frame.

Note that there is no guarantee that the delay will not be exceeded, it is - only guaranteed that the function will not be executed before the delay - has passed.

It is an error to schedule a timer again if it is not yet finished or canced.

func will receive itself as only parameter. This is useful to implement - periodic behavior (see the example).

Parameters:
number delay
Number of seconds the function will be delayed.
function func
The function to be delayed.
Returns:
function
The timer handle.
Examples:
-- grant the player 5 seconds of immortality
+end

hump.timer^ top

Timer = require "hump.timer"

hump.timer provides a simple interface to use delayed functions, i.e. functionsthat will be executed after some amount time has passed. For example, you can usea timer to set the player invincible for a short amount of time.

In addition, the module offers facilities to create functions that interpolateor oscillate over time. An interpolator could fade the color or a text message,whereas an oscillator could be used for the movement of foes in a shmup.

Module overview

add()
Add a timed function.
addPeriodic()
Add a periodic function.
cancel()
Cancel a scheduled function.
clear()
Remove all timed and periodic functions.
update()
Update timed functions.
Interpolator()
Create a new interpolating function.
Oscillator()
Create a new oscillating function.

function add(delay, func)^ top

Add a timed function. The function will be executed after delay seconds have elapsed, given that update() is called every frame.

Note that there is no guarantee that the delay will not be exceeded, it is only guaranteed that the function will not be executed before the delay has passed.

It is an error to schedule a function again if it is not yet finished or canceled.

func will receive itself as only parameter. This is useful to implement periodic behavior (see the example).

Parameters:
number delay

Number of seconds the function will be delayed.

function func

The function to be delayed.

Returns:
function

The timer handle.

Example:
-- grant the player 5 seconds of immortality
 player.isInvincible = true
-Timer.add(5, function() player.isInvincible = false end)
-- print "foo" every second. See addPeriodic.
-Timer.add(1, function(func) print("foo") Timer.add(1, func) end)

function addPeriodic(delay, func, count)^ top

Add a function that will be called count times every delay seconds.

If count is omitted, the function will be called until it returns false - or clear() is called.

Parameters:
number delay
Number of seconds between two consecutive function calls.
function func
The function to be called periodically.
number count (optional)
Number of times the function is to be called.
Returns:
function
The timer handle.
Examples:
Timer.addPeriodic(1, function() lamp:toggleLight() end)
Timer.addPeriodic(0.3, function() mothership:spawnFighter() end, 5)
-- flicker player's image as long as he is invincible
+Timer.add(5, function() player.isInvincible = false end)
-- print "foo" every second. See addPeriodic.
+Timer.add(1, function(func) print("foo") Timer.add(1, func) end)

function addPeriodic(delay, func, count)^ top

Add a function that will be called count times every delay seconds.

If count is omitted, the function will be called until it returns false or clear() is called.

Parameters:
number delay

Number of seconds between two consecutive function calls.

function func

The function to be called periodically.

number count

Number of times the function is to be called.

Returns:
function

The timer handle.

Example:
Timer.addPeriodic(1, function() lamp:toggleLight() end)
Timer.addPeriodic(0.3, function() mothership:spawnFighter() end, 5)
-- flicker player's image as long as he is invincible
 Timer.addPeriodic(0.1, function()
     player:flipImage()
     return player.isInvincible
-end)

function cancel(func)^ top

Prevent a timer from being executed in the future.

Alway use the function handle returned by add()/addPeriodic() to cancel a timer.

Never use this in another timer.

Parameters:
function func
The function to be canceled.
Returns:
Nothing.
Example:
function tick()
-    print('tock')
+end)

function cancel(func)^ top

Prevent a timer from being executed in the future.

Always use the function handle returned by add()/addPeriodic() to cancel a timer.

Never use this in another timer.

Parameters:
function func

The function to be canceled.

Returns:
Nothing
Example:
function tick()
+    print('tick... tock...')
 end
 handle = Timer.addPeriodic(1, tick)
-
 -- later
-Timer.cancel(handle) -- NOT: Timer.cancel(tick)

function update(dt)^ top

Update timers and execute functions if the deadline is reached. Use this in love.update(dt).

Parameters:
number dt
Time that has passed since the last update().
Returns:
Nothing.
Example:
function love.update(dt)
+Timer.cancel(handle) -- NOT: Timer.cancel(tick)

function clear()^ top

Remove all timed and periodic functions. Functions that have not yet been executed will discarded.

Parameters:
None
Returns:
Nothing
Example:
Timer.clear()

function update(dt)^ top

Update timers and execute functions if the deadline is reached. Use this in love.update(dt).

Parameters:
number dt

Time that has passed since the last update().

Returns:
Nothing
Example:
function love.update(dt)
     do_stuff()
     Timer.update(dt)
-end

function clear()^ top

Remove all timed and periodic functions. Functions that have not yet been executed will discarded.

Parameters:
None.
Returns:
Nothing.
Example:
Timer.clear()

function update(dt)^ top

Update timers and execute functions if the deadline is reached. Use this in love.update(dt).

Parameters:
number dt
Time that has passed since the last update().
Returns:
Nothing.
Example:
function love.update(dt)
-    do_stuff()
-    Timer.update(dt)
-end

function Interpolator(length, func)^ top

Create a wrapper for an interpolating function, i.e. a function that acts - depending on how much time has passed.

The wrapper will have the prototype: -

function wrapper(dt, ...) 
- where dt is the time that has passed since the last call of the wrapper - and ... are arguments passed to the interpolating function. It will return - whatever the interpolating functions returns if the interpolation is not yet - finished or nil if the interpolation is done.

The prototype of the interpolating function is: -

function interpolator(fraction, ...) 
- where fraction is a number between 0 and 1 depending on how much time has - passed and ... are additional arguments supplied to the wrapper.

Parameters:
number length
Interpolation length in seconds.
function func
Interpolating function.
Returns:
function
The wrapper function.
Example:
fader = Timer.Interpolator(5, function(frac, r,g,b)
+end

function Interpolator(length, func)^ top

Create a wrapper for an interpolating function, i.e. a function that acts depending on how much time has passed.

The wrapper will have the prototype:

function wrapper(dt, ...) 
where dt is the time that has passed since the last call of the wrapper and ... are arguments passed to the interpolating function. It will return whatever the interpolating functions returns if the interpolation is not yet finished or nil if the interpolation is done.

The prototype of the interpolating function is:

function interpolator(fraction, ...) 
where fraction is a number between 0 and 1 depending on how much time has passed and ... are additional arguments supplied to the wrapper.

Parameters:
number length

Interpolation length in seconds.

function func

Interpolating function.

Returns:
function

The wrapper function.

Example:
fader = Timer.Interpolator(5, function(frac, r,g,b)
     love.graphics.setBackgroundColor(frac*r,frac*g,frac*b)
 end)
 
 function love.update(dt)
     fader(dt, 255,255,255)
-end

function Oscillator(length, func)^ top

Create a wrapper for an oscillating function, which is basically a looping - interpolating function.

The function prototypes are the same as with Interpolator(): -

function wrapper(dt, ...) 
-
function oscillator(fraction, ...) 

As with Interpolator, the wrapper will return whatever oscillator() returns.

Parameters:
number length
Length of one interpolation period.
function func
Oscillating function.
Returns:
function
The wrapper function.
Example:
mover = Timer.Oscillator(10, function(frac)
+end

function Oscillator(length, func)^ top

Create a wrapper for an oscillating function, which is basically a looping interpolating function.

The function prototypes are the same as with Interpolator():

function wrapper(dt, ...) 
function oscillator(fraction, ...) 

As with Interpolator, the wrapper will return whatever oscillator() returns.

Parameters:
number length

Length of one interpolation period.

function func

Oscillating function.

Returns:
function

The wrapper function.

Example:
mover = Timer.Oscillator(10, function(frac)
    return 400 + 300 * math.sin(2*math.pi*frac)
 end)
 
@@ -202,116 +80,112 @@ function love.update(dt)
 end
 
 function love.draw()
-    love.graphics.circle('fill', xpos, 300, 80, 36)
-end
-

hump.vector^ top

hump.vector = require "vector"
A handy 2D vector class providing most of the things you do with vectors.

You can access the individual coordinates by using vec.x and vec.y.

Module overview

new()
Create a new vector.
isvector()
Test if value is a vector.
vector:clone()
Copy a vector.
vector:unpack()
Extract coordinates.
vector:permul()
Per element multiplication.
vector:len()
Get length.
vector:len2()
Get squared length.
vector:dist()
Distance to other vector.
vector:normalized()
Get normalized vector.
vector:normalize_inplace()
Normalize vector in-place.
vector:rotated()
Get rotated vector.
vector:rotate_inplace()
Rotate vector in-place.
vector:perpendicular()
Get perpendicular vector.
vector:projectOn()
Get projection onto another vector.
vector:mirrorOn()
Mirrors vector on other vector
vector:cross()
Cross product of two vectors.

Arithmetics and relations

Vector arithmetic is implemented by using __add, __mul and other metamethods:

vector + vector = vector
Component wise sum. -
vector - vector = vector
Component wise difference. -
vector * vector = number
Dot product. -
number * vector = vector
Vector scaling (scalar multiplication). -
vector * number = vector
Vector scaling. -
vector / number = vector
Vector scaling. -

Relational operators are defined, too:

a == b
true, if a.x == b.x and a.y == b.y. -
a <= b
true, if a.x <= b.x and a.y <= b.y. -
a < b
Lexical sort: true, if a.x < b.x or a.x == b.x and a.y < b.y. -

Example:
-- acceleration, player.velocity and player.position are vectors
+    love.graphics.circle('fill', xpos, 300, 80, 36)
+end

hump.vector^ top

vector = require "hump.vector"

A handy 2D vector class providing most of the things you do with vectors.

You can access the individual coordinates by using vec.x and vec.y.

Module overview

operators
Arithmetics and relations
new()
Create a new vector.
isvector()
Test if value is a vector.
vector:clone()
Copy a vector.
vector:unpack()
Extract coordinates.
vector:permul()
Per element multiplication.
vector:len()
Get length.
vector:len2()
Get squared length.
vector:dist()
Distance to other vector.
vector:normalized()
Get normalized vector.
vector:normalize_inplace()
Normalize vector in-place.
vector:rotated()
Get rotated vector.
vector:rotate_inplace()
Rotate vector in-place.
vector:perpendicular()
Get perpendicular vector.
vector:projectOn()
Get projection onto another vector.
vector:mirrorOn()
Mirrors vector on other vector
vector:cross()
Cross product of two vectors.

Arithmetics and relations^ top

Vector arithmetic is implemented by using __add, __mul and other metamethods:

vector + vector = vector
Component wise sum.
vector - vector = vector
Component wise difference.
vector * vector = number
[^http://en.wikipedia.org/wiki/Dot_product Dot product].
number * vector = vector
Vector scaling ([^http://en.wikipedia.org/wiki/Scalar_multiplication scalar multiplication]).
vector * number = vector
Vector scaling.
vector / number = vector
Vector scaling.

Relational operators are defined, too:

a == b
true, if a.x == b.x and a.y == b.y.
a <= b
true, if a.x <= b.x and a.y <= b.y.
a < b
Lexical sort: true, if a.x < b.x or a.x == b.x and a.y < b.y.

Example:
-- acceleration, player.velocity and player.position are vectors
 acceleration = vector(0,-9)
 player.velocity = player.velocity + acceleration * dt
-player.position = player.position + player.velocity * dt

function new(x,y)^ top

Create a new vector.

Parameters:
numbers x,y
Coordinates.
Returns:
vector
The vector.
Examples:
a = vector.new(10,10)
-- as a shortcut, you can call the module like a function:
-vector = require "hump.vector"
-a = vector(10,10)

function isvector(v)^ top

Test whether a variable is a vector.

Parameters:
mixed v
The variable to test.
Returns:
boolean
true if v is a vector, false otherwise
Example:
if not vector.isvector(v) then
+player.position = player.position + player.velocity * dt

function new(x,y)^ top

Create a new vector.

Parameters:
numbers x,y

Coordinates.

Returns:
vector

The vector.

Example:
a = vector.new(10,10)
-- as a shortcut, you can call the module like a function:
+vector = require "hump.vector"
+a = vector(10,10)

function isvector(v)^ top

Test whether a variable is a vector.

Parameters:
mixed v

The variable to test.

Returns:
boolean

true if v is a vector, false otherwise

Example:
if not vector.isvector(v) then
     v = vector(v,0)
-end

function vector:clone()^ top

Copy a vector. Simply assigning a vector a vector to a variable will create - a reference, so when modifying the vector referenced by the new variable - would also change the old one: -

a = vector(1,1) -- create vector
-b = a           -- b references a
-c = a:clone()   -- c is a copy of a
-b.x = 0         -- changes a,b and c
-print(a,b,c)    -- prints '(1,0), (1,0), (1,1)'

Parameters:
None.
Returns:
vector
Copy of the vector
Example:
copy = original:clone

function vector:unpack()^ top

Extract coordinates.

Parameters:
None.
Returns:
numbers
The coordinates
Examples:
x,y = pos:unpack()
love.graphics.draw(self.image, self.pos:unpack())

function vector:permul(other)^ top

Multiplies vectors coordinate wise, i.e. result = vector(a.x * b.x, a.y * b.y).

This does not change either argument vectors, but creates a new one.

Parameters:
vector other
The other vector
Returns:
vector
The new vector as described above
Example:
scaled = original:permul(vector(1,1.5))

function vector:len()^ top

Get length of a vector, i.e. math.sqrt(vec.x * vec.x + vec.y * vec.y).

Parameters:
None.
Returns:
number
Length of the vector.
Example:
distance = (a - b):len()

function vector:len2()^ top

Get squared length of a vector, i.e. vec.x * vec.x + vec.y * vec.y.

Parameters:
None.
Returns:
number
Squared length of the vector.
Example:
-- get closest vertex to a given vector
+end

function vector:clone()^ top

Copy a vector. Simply assigning a vector a vector to a variable will create a reference, so when modifying the vector referenced by the new variable would also change the old one:

a = vector(1,1) -- create vectorb = a           -- b references ac = a:clone()   -- c is a copy of ab.x = 0         -- changes a,b and cprint(a,b,c)    -- prints '(1,0), (1,0), (1,1)'

Parameters:
None
Returns:
vector

Copy of the vector

Example:
copy = original:clone

function vector:unpack()^ top

Extract coordinates.

Parameters:
None
Returns:
numbers

The coordinates

Example:
x,y = pos:unpack()
love.graphics.draw(self.image, self.pos:unpack())

function vector:permul(other)^ top

Multiplies vectors coordinate wise, i.e. result = vector(a.x * b.x, a.y * b.y).

This does not change either argument vectors, but creates a new one.

Parameters:
vector other

The other vector

Returns:
vector

The new vector as described above

Example:
scaled = original:permul(vector(1,1.5))

function vector:len()^ top

Get length of a vector, i.e. math.sqrt(vec.x * vec.x + vec.y * vec.y).

Parameters:
None
Returns:
number

Length of the vector.

Example:
distance = (a - b):len()

function vector:len2()^ top

Get squared length of a vector, i.e. vec.x * vec.x + vec.y * vec.y.

Parameters:
None
Returns:
number

Squared length of the vector.

Example:
-- get closest vertex to a given vector
 closest, dsq = vertices[1], (pos - vertices[1]):len2()
 for i = 2,#vertices do
     local temp = (pos - vertices[i]):len2()
-    if temp < dsq then
+    if temp < dsq then
         closest, dsq = vertices[i], temp
     end
-end

function vector:dist(other)^ top

Get distance of two vectors. The same as (a - b):len().

Parameters:
vector other
Other vector to measure the distance to.
Returns:
number
The distance of the vectors.
Example:
-- get closest vertex to a given vector
+end

function vector:dist(other)^ top

Get distance of two vectors. The same as (a - b):len().

Parameters:
vector other

Other vector to measure the distance to.

Returns:
number

The distance of the vectors.

Example:
-- get closest vertex to a given vector
 -- slightly slower than the example using len2()
 closest, dist = vertices[1], pos:dist(vertices[1])
 for i = 2,#vertices do
     local temp = pos:dist(vertices[i])
-    if temp < dist then
+    if temp < dist then
         closest, dist = vertices[i], temp
     end
-end

function vector:normalized()^ top

Get normalized vector, i.e. a vector with the same direction as the input - vector, but with length 1.

This does not change the input vector, but creates a new vector.

Parameters:
None.
Returns:
vector
Vector with same direction as the input vector, but length 1.
Example:
direction = velocity:normalized()

function vector:normalize_inplace()^ top

Normalize a vector, i.e. make the vector unit length. Great to use on - intermediate results.

This modifies the vector. If in doubt, use vector:normalized().

Parameters:
None.
Returns:
vector
Itself - the normalized vector
Example:
normal = (b - a):perpendicular():normalize_inplace()

function vector:rotated(phi)^ top

Get a rotated vector.

This does not change the input vector, but creates a new vector.

Parameters:
number phi
Rotation angle in radians.
Returns:
vector
The rotated vector
Example:
-- approximate a circle
+end

function vector:normalized()^ top

Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1.

This does not change the input vector, but creates a new vector.

Parameters:
None
Returns:
vector

Vector with same direction as the input vector, but length 1.

Example:
direction = velocity:normalized()

function vector:normalize_inplace()^ top

Normalize a vector, i.e. make the vector unit length. Great to use on intermediate results.

This modifies the vector. If in doubt, use {#vector:normalized()}.

Parameters:
None
Returns:
vector

Itself - the normalized vector

Example:
normal = (b - a):perpendicular():normalize_inplace()

function vector:rotated(phi)^ top

Get a rotated vector.

This does not change the input vector, but creates a new vector.

Parameters:
number phi

Rotation angle in radians.

Returns:
vector

The rotated vector

Example:
-- approximate a circle
 circle = {}
 for i = 1,30 do
     local phi = 2 * math.pi * i / 30
     circle[#circle+1] = vector(0,1):rotated(phi)
-end
Sketch:

sketch of rotated vectors

function vector:rotate_inplace(phi)^ top

Rotate a vector in-place. Great to use on intermediate results.

This modifies the vector. If in doubt, use vector:rotate()

Parameters:
number phi
Rotation angle in radians.
Returns:
vector
Itself - the rotated vector
Example:
-- ongoing rotation
-spawner.direction:rotate_inplace(dt)

function vector:perpendicular()^ top

Quick rotation by 90°. Creates a new vector. The same as (but faster): -

vec:rotate(math.pi/2)

Parameters:
None.
Returns:
vector
A vector perpendicular to the input vector
Example:
normal = (b - a):perpendicular():normalize_inplace()
Sketch:

sketch of perpendicular vectors

function vector:projectOn(v)^ top

Project vector onto another vector (see sketch).

Parameters:
vector v
The vector to project on.
Returns:
vector
The projected vector.
Example:
velocity_component = velocity:projectOn(axis)
Sketch:

sketch of vector projection

function vector:mirrorOn(v)^ top

Mirrors vector on the axis defined by the other vector.

Parameters:
vector v
The vector to mirror on.
Returns:
vector
The mirrored vector.
Example:
deflected_velocity = ball.velocity:mirrorOn(surface_normal)
Sketch:

sketch of vector mirroring on axis

function vector:cross(other)^ top

Get cross product of both vectors. Equals the area of the parallelogram - spanned by both vectors.

Parameters:
vector other
Vector to compute the cross product with.
Returns:
number
Cross product of both vectors.
Example:
parallelogram_area = a:cross(b)
Sketch:

sketch of vector cross product

-

hump.class^ top

hump.class = require "Class"
A small, fast class implementation with multiple inheritance support

Module overview

new()
Declare a new class.
class.construct()
Call class constructor.
class:inherit()
Explicit class inheritance/mixin support.
object:is_a()
Test object's type.

function new{constructor, name = the_name, inherits = super}^ top

Declare a new class.

The constructor will receive the newly create object as first argument.

You can check if an object is an instance of a class using object:is_a().

The name of the variable that holds the module can be used as a shortcut to - new() (see example).

Parameters:
function constructor (optional)
Class constructor. Can be accessed with theclass.construct(object, ...)
string the_name (optional)
Class name (used only to make the class compliant to tostring().
class or table of classes super (optional)
Classes to inherit from. Can either be a single class or a table of classes
Returns:
class
The class
Examples:
Class = require 'hump.class' -- `Class' is now a shortcut to new()
+end
Sketch:

function vector:rotate_inplace(phi)^ top

Rotate a vector in-place. Great to use on intermediate results.

This modifies the vector. If in doubt, use {#vector:rotate()}

Parameters:
number phi

Rotation angle in radians.

Returns:
vector

Itself - the rotated vector

Example:
-- ongoing rotation
+spawner.direction:rotate_inplace(dt)

function vector:perpendicular()^ top

Quick rotation by 90°. Creates a new vector. The same as (but faster):

vec:rotate(math.pi/2)

Parameters:
None
Returns:
vector

A vector perpendicular to the input vector

Example:
normal = (b - a):perpendicular():normalize_inplace()
Sketch:

function vector:projectOn(v)^ top

Project vector onto another vector (see sketch).

Parameters:
vector v

The vector to project on.

Returns:
vector

The projected vector.

Example:
velocity_component = velocity:projectOn(axis)
Sketch:

function vector:mirrorOn(v)^ top

Mirrors vector on the axis defined by the other vector.

Parameters:
vector v

The vector to mirror on.

Returns:
vector

The mirrored vector.

Example:
deflected_velocity = ball.velocity:mirrorOn(surface_normal)
Sketch:

function vector:cross(other)^ top

Get cross product of both vectors. Equals the area of the parallelogram spanned by both vectors.

Parameters:
vector other

Vector to compute the cross product with.

Returns:
number

Cross product of both vectors.

Example:
parallelogram_area = a:cross(b)
Sketch:

hump.vector-light^ top

vector = require "hump.vector-light"

An table-free version of hump.vector. Instead of a vector class, hump.vector-light provides functions that operate on numbers.

Using this module instead of vector might result in faster code, but does so at the expense of readability. Unless you are sure that it causes a significant performance penalty, I recommend to use hump.vector.

Module overview

str()
String representation.
mul()
Product of a vector and a scalar.
div()
Product of a vector and the inverse of a scalar.
add()
Sum of two vectors.
sub()
Difference of two vectors.
permul()
Per element multiplication.
dot()
[^http://en.wikipedia.org/wiki/Dot_product Dot product]
det()
Cross product
cross()
Cross product
eq()
Equality.
le()
Partial lexical order.
lt()
Strict lexical order.
len()
Get length.
len2()
Get squared length.
dist()
Distance of two points.
normalize()
Normalize vector.
rotate()
Rotate vector.
perpendicular()
Get perpendicular vector.
project()
Project projection onto another vector.
mirror()
Mirrors vector on other vector.

function str(x,y)^ top

Transforms a vector to a string of the form (x,y).

Parameters:
numbers x,y

The vector

Returns:
string

The string representation

Example:
print(vector.str(love.mouse.getPosition()))

function mul(s, x,y)^ top

function div(s, x,y)^ top

Computes x*s, y*s and x/s, y/s. The order of arguments is chosen so that you can chain multiple operations (see example).

Parameters:
number s

The scalar.

numbers x,y

The vector.

Returns:
numbers

The result of the operation.

Example:
velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy))
x,y = vec.div(self.zoom, x-w/2, y-h/2)

function add(x1,y1, x2,y2)^ top

function sub(x1,y1, x2,y2)^ top

Computes the sum/difference of vectors. Same as x1+x2, y1+y2 or x1-x2, y1-y2 respectively. Meant to be used in conjunction with other functions.

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
numbers

The result of the operation.

Example:
player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy))
dx,dy = vector.sub(400,300, love.mouse.getPosition())

function permul(x1,y1, x2,y2)^ top

Multiplies vectors coordinate wise, i.e. x1*x2, y1*y2).

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
numbers

The result of the operation.

Example:
x,y = vector.permul(x,y, 1,1.5)

function dot(x1,y1, x2,y2)^ top

Computes the dot product of two vectors, x1*x2 + y1*y2.

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
number

The dot product.

Example:
cosphi = vector.dot(rx,ry, vx,vy)

function det(x1,y1, x2,y2)^ top

function cross(x1,y1, x2,y2)^ top

Computes the cross product/determinant of two vectors, x1*y2 - y1*x2.

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
number

The cross product.

Example:
parallelogram_area = vector.det(ax,ay, bx,by)

function eq(x1,y1, x2,y2)^ top

function le(x1,y1, x2,y2)^ top

function lt(x1,y1, x2,y2)^ top

Compares two vectors according to

vector.eq(x1,y1, x2,y2)
x1 == x2 and y1 == y2
vector.le(x1,y1, x2,y2)
x1 <= x2 and y1 <= y2
vector.lt(x1,y1, x2,y2)
x1 < x2 or (x1 == x2) and y1 <= y2

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
boolean

The result of the operation.

Example:
...

function len(x,y)^ top

Get length of a vector, i.e. math.sqrt(x*x + y*y).

Parameters:
numbers x,y

The vector.

Returns:
number

Length of the vector.

Example:
distance = vector.len(love.mouse.getPosition())

function len2(x,y)^ top

Get squared length of a vector, i.e. x*x + y*y.

Parameters:
numbers x,y

The vector.

Returns:
number

Squared length of the vector.

Example:
-- get closest vertex to a given vector
+closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y)
+for i = 2,#vertices do
+    local temp = vector.len2(px-vertices[i].x, py-vertices[i].y)
+    if temp < dsq then
+        closest, dsq = vertices[i], temp
+    end
+end

function dist(x1,y1, x2,y2)^ top

Get distance of two points. The same as vector.len(x1-x2, y1-y2).

Parameters:
numbers x1,y1

First vector.

numbers x2,y2

Second vector.

Returns:
number

The distance of the points.

Example:
-- get closest vertex to a given vector
+-- slightly slower than the example using len2()
+closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y)
+for i = 2,#vertices do
+    local temp = vector.dist(px,py, vertices[i].x,vertices[i].y)
+    if temp < dist then
+        closest, dist = vertices[i], temp
+    end
+end

function normalize(x,y)^ top

Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1.

Parameters:
numbers x,y

The vector.

Returns:
numbers

Vector with same direction as the input vector, but length 1.

Example:
dx,dy = vector.normalize(vx,vy)

function rotate(phi, x,y)^ top

Get a rotated vector.

Parameters:
number phi

Rotation angle in radians.

numbers x,y

The vector.

Returns:
numbers

The rotated vector

Example:
-- approximate a circle
+circle = {}
+for i = 1,30 do
+    local phi = 2 * math.pi * i / 30
+    circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1)
+end

function perpendicular(x,y)^ top

Quick rotation by 90°. The same as (but faster)

vector.rotate(math.pi/2, x,y)

Parameters:
numbers x,y

The vector.

Returns:
numbers

A vector perpendicular to the input vector

Example:
nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay))

function project(x,y, u,v)^ top

Project vector onto another vector.

Parameters:
numbers x,y

The vector to project.

numbers u,v

The vector to project onto.

Returns:
numbers

The projected vector.

Example:
vx_p,vy_p = vector.project(vx,vy, ax,ay)

function mirror(x,y, u,v)^ top

Mirrors vector on the axis defined by the other vector.

Parameters:
numbers x,y

The vector to mirror.

numbers u,v

The vector defining the axis.

Returns:
numbers

The mirrored vector.

Example:
vx,vy = vector.mirror(vx,vy, surface.x,surface.y)

hump.class^ top

Class = require "hump.class"

A small, fast class implementation with multiple inheritance support

Module overview

new()
Declare a new class.
class.construct()
Call class constructor.
class:inherit()
Explicit class inheritance/mixin support.
object:is_a()
Test object's type.
caveats
Caveats

function new(constructor, the_name, super)^ top

Declare a new class.

The constructor will receive the newly create object as first argument.

You can check if an object is an instance of a class using object:is_a().

The name of the variable that holds the module can be used as a shortcut to new() (see example).

Parameters:
function constructor

Class constructor. Can be accessed with theclass.construct(object, ...)

string the_name

Class name (used only to make the class compliant to tostring().

class or table of classes super

Classes to inherit from. Can either be a single class or a table of classes

Returns:
class

The class

Example:
Class = require 'hump.class' -- `Class' is now a shortcut to new()
 
--- define class without a name
+-- define class with implicit name  'Feline'
 Feline = Class{function(self, size, weight)
     self.size = size
     self.weight = weight
 end}
-print(Feline) -- prints '<unnamed class>'
+print(Feline) -- prints 'Feline'
 
 -- define class method
 function Feline:stats()
-    return string.format("size: %.02f, weight %.02f", self.size, self.weight)
+    return string.format("size: %.02f, weight %.02f", self.size, self.weight)
 end
 
 -- create two objects
 garfield = Feline(.7, 45)
 felix = Feline(.8, 12)
 
-print("Garfield: " .. garfield:stats(), "Felix: " .. felix:stats())
-
Class = require 'hump.class'
+print("Garfield: " .. garfield:stats(), "Felix: " .. felix:stats())
+
Class = require 'hump.class'
 
--- define class with explicit name 'Feline'
-Feline = Class{name = "Feline", function(self, size, weight)
+-- define class with explicit name 'Feline'
+Feline = Class{name = "Feline", function(self, size, weight)
     self.size = size
     self.weight = weight
 end}
 
 garfield = Feline(.7, 45)
-print(Feline, garfield) -- prints 'Feline	<instance of Feline>'
-
Class = require 'hump.class'
+print(Feline, garfield) -- prints 'Feline	'
+
Class = require 'hump.class'
 A = Class{}
 function A:foo()
-    print('foo')
+    print('foo')
 end
 
 B = Class{}
 function B:bar()
-    print('bar')
+    print('bar')
 end
 
 -- single inheritance
 C = Class{inherits = A}
 instance = C()
-instance:foo() -- prints 'foo'
+instance:foo() -- prints 'foo'
 
 -- multiple inheritance
 D = Class{inherits = {A,B}}
 instance = D()
-instance:foo() -- prints 'foo'
-instance:bar() -- prints 'bar'
-

function class.construct(object, ...)^ top

Calls class constructor of a class on an object

Derived classes use this function their constructors to initialize the - parent class(es) portions of the object.

Parameters:
Object object
The object. Usually self.
mixed ...
Arguments to pass to the constructor
Returns:
mixed
Whatever the parent class constructor returns
Examples:
Class = require 'hump.class'
+instance:foo() -- prints 'foo'
+instance:bar() -- prints 'bar'
+

function class.construct(object, ...)^ top

Calls class constructor of a class on an object

Derived classes use this function their constructors to initialize the parent class(es) portions of the object.

Parameters:
Object object

The object. Usually self.

mixed ...

Arguments to pass to the constructor

Returns:
mixed

Whatever the parent class constructor returns

Example:
Class = require 'hump.class'
 
 Shape = Class{function(self, area)
     self.area = area
 end}
 function Shape:__tostring()
-    return "area = " .. self.area
+    return "area = " .. self.area
 end
 
 Rectangle = Class{inherits = Shape, function(self, width, height)
@@ -321,14 +195,14 @@ Rectangle = Class{inherits = Shape, function(self, width, height)
 end}
 function Rectangle:__tostring()
     local strs = {
-        "width = " .. self.width,
-        "height = " .. self.height,
+        "width = " .. self.width,
+        "height = " .. self.height,
         Shape.__tostring(self)
     },
-    return table.concat(strs, ", ")
+    return table.concat(strs, ", ")
 end
 
-print( Rectangle(2,4) ) -- prints 'width = 2, height = 4, area = 8'
+print( Rectangle(2,4) ) -- prints 'width = 2, height = 4, area = 8'
 
Menu = Class{function(self)
     self.entries = {}
 end}
@@ -352,14 +226,7 @@ Submenu = Class{inherits = {Menu, Entry}, function(self, title)
     -- redirect self:execute() to self:display()
     Entry.construct(self, title, Menu.display)
 end}
-

function class:inherit(...)^ top

Inherit functions and variables of another class, if they are not already - defined for the class. This is done by simply copying the functions and - variables over to the subclass. The Lua rules for copying apply - (i.e. tables are referenced, functions and primitive types are copied by value).

Be careful with changing table values in a subclass: This will change the - value in the parent class too.

If more than one parent class is specified, inherit from all of these, in - order of occurrence. That means that when two parent classes define the same - method, the one from the first class will be inherited.

Note: class:inherit() doesn't actually care if the arguments supplied are - hump classes. Just any table will work.

Parameters:
tables ...
Parent classes to inherit from
Returns:
Nothing.
Example:
Class = require 'hump.class'
+

function class:inherit(...)^ top

Inherit functions and variables of another class, if they are not already defined for the class. This is done by simply copying the functions and variables over to the subclass. The Lua rules for copying apply (i.e. tables are referenced, functions and primitive types are copied by value).

Be careful with changing table values in a subclass: This will change the value in the parent class too.

If more than one parent class is specified, inherit from all of these, in order of occurrence. That means that when two parent classes define the same method, the one from the first class will be inherited.

Note: class:inherit() doesn't actually care if the arguments supplied are hump classes. Just any table will work.

Parameters:
tables ...

Parent classes to inherit from

Returns:
Nothing
Example:
Class = require 'hump.class'
 
 Entity = Class{function(self)
     GameObjects.register(self)
@@ -370,194 +237,95 @@ Collidable = {
         if self.collision_handler[other.type])
             return collision_handler[other.type](self, other, dx, dy)
         end
-        return collision_handler["*"](self, other, dx, dy)
+        return collision_handler["*"](self, other, dx, dy)
     end,
 
-    collision_handler = {["*"] = function() end},
+    collision_handler = {["*"] = function() end},
 }
 
 Spaceship = Class{function(self)
-    self.type = "Spaceship"
+    self.type = "Spaceship"
     -- ...
 end}
 
 -- make Spaceship collidable
 Spaceship:inherit(Collidable)
 
-function Spaceship:collision_handler["Spaceship"](other, dx, dy)
+function Spaceship:collision_handler["Spaceship"](other, dx, dy)
     -- ...
 end
-

function object:is_a(cls)^ top

Tests whether an object is an instance of a class.

Parameters:
class cls
Class to test. Note: this is the class itself, not the name of the class.
Returns:
Boolean
true if the object is an instance of the class, false otherwise
Example:
Class = require 'hump.class'
+

function object:is_a(cls)^ top

Tests whether an object is an instance of a class.

Parameters:
class cls

Class to test. Note: this is the class itself, not the name of the class.

Returns:
Boolean

true if the object is an instance of the class, false otherwise

Example:
Class = require 'hump.class'
 
 A = Class{}
 B = Class{inherits=A}
 C = Class{inherits=B}
 a, b, c = A(), B(), C()
-print(a:is_a(A), a:is_a(B), a:is_a(C)) --> true   false  false
-print(b:is_a(A), b:is_a(B), b:is_a(C)) --> true   true   false
-print(c:is_a(A), c:is_a(B), c:is_a(C)) --> true   true   true
+print(a:is_a(A), a:is_a(B), a:is_a(C)) --> true   false  false
+print(b:is_a(A), b:is_a(B), b:is_a(C)) --> true   true   false
+print(c:is_a(A), c:is_a(B), c:is_a(C)) --> true   true   true
 
 D = Class{}
 E = Class{inherits={B,D}}
 d, e = D(), E()
-print(d:is_a(A), d:is_a(B), d:is_a(D)) --> false  false  true
-print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true   true   true
-

Caveats

Be careful when using metamethods like __add or __mul: If subclass - inherits those methods from a superclass, but does not overwrite them, the - result of the operation may be of the type superclass. Consider the following: -

Class = require 'hump.class'

A = Class{function(self, x) self.x = x end} -function A:__add(other) return A(self.x + other.x) end -function A:show() print("A:", self.x) end

B = Class{inherits = A, function(self, x, y) A.construct(self, x) self.y = y end} -function B:show() print("B:", self.x, self.y) end -function B:foo() print("foo") end

one, two = B(1,2), B(3,4) -result = one + two -result:show() -- prints "A: 4" -result:foo() -- error: method does not exist

Note that while you can define the __index metamethod of the class, this - is not a good idea: It will break the class. To add a custom __index - metamethod without breaking the class system, you have to use rawget(). - But beware that this won't affect subclasses: -

Class = require 'hump.class'

A = Class{} -function A:foo() print('bar') end

function A:__index(key) - print(key) - return rawget(A, key) -end

instance = A() -instance:foo() -- prints foo <newline> bar

B = Class{inherits = A} -instance = B() -instance:foo() -- prints only foo

-

hump.camera^ top

hump.camera = require "Camera"
Depends on hump.vector

A camera utility for LÖVE. A camera can "look" at a position. It can zoom in and - out and it can rotate it's view. In the background, this is done by actually - moving, scaling and rotating everything in the game world. But don't worry about - that.

Module overview

new()
Create a new camera object.
camera:rotate()
Rotate camera object.
camera:move()
Move camera object.
camera:attach()
Attach camera object.
camera:detach()
Detach camera object.
camera:draw()
Attach, draw and detach.
camera:worldCoords()
Convert point to world coordinates.
camera:cameraCoords()
Convert point to camera coordinates.
camera:mousepos()
Get mouse position in world coordinates.

function new(pos, zoom, rot)^ top

Creates a new camera object. You can access the camera position using - camera.pos, the zoom using camera.zoom and the rotation using - camera.rot.

The module variable name can be used at a shortcut to new().

Parameters:
vector pos (screen center)
Point for the camera to look at.
number zoom (1)
Camera zoom.
number rot (0)
Camera rotation in radians.
Returns:
camera
A new camera object.
Example:
camera = require 'hump.camera'
-vector = require 'hump.vector'
+print(d:is_a(A), d:is_a(B), d:is_a(D)) --> false  false  true
+print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true   true   true
+

Caveats^ top

Be careful when using metamethods like __add or __mul: If subclass inherits those methods from a superclass, but does not overwrite them, the result of the operation may be of the type superclass. Consider the following:

Class = require 'hump.class'

A = Class{function(self, x) self.x = x end}function A:__add(other) return A(self.x + other.x) endfunction A:show() print("A:", self.x) end

B = Class{inherits = A, function(self, x, y) A.construct(self, x) self.y = y end}function B:show() print("B:", self.x, self.y) endfunction B:foo() print("foo") end

one, two = B(1,2), B(3,4)result = one + tworesult:show() -- prints "A: 4"result:foo() -- error: method does not exist

Note that while you can define the __index metamethod of the class, this is not a good idea: It will break the class. To add a custom __index metamethod without breaking the class system, you have to use rawget(). But beware that this won't affect subclasses:

Class = require 'hump.class'

A = Class{}function A:foo() print('bar') end

function A:__index(key) print(key) return rawget(A, key)end

instance = A()instance:foo() -- prints foo bar

B = Class{inherits = A}instance = B()instance:foo() -- prints only foo

hump.camera^ top

Camera = require "hump.camera"

Depends on hump.vector-light

A camera utility for LÖVE. A camera can "look" at a position. It can zoom in andout and it can rotate it's view. In the background, this is done by actuallymoving, scaling and rotating everything in the game world. But don't worry aboutthat.

Module overview

new()
Create a new camera object.
camera:rotate()
Rotate camera object.
camera:move()
Move camera object.
camera:attach()
Attach camera object.
camera:detach()
Detach camera object.
camera:draw()
Attach, draw and detach.
camera:worldCoords()
Convert point to world coordinates.
camera:cameraCoords()
Convert point to camera coordinates.
camera:mousepos()
Get mouse position in world coordinates.

function new(x,y, zoom, rot)^ top

Creates a new camera object. You can access the camera position using camera.x, camera.y, the zoom using camera.zoom and the rotation using camera.rot.

The module variable name can be used at a shortcut to new().

Parameters:
numbers x,y

Point for the camera to look at.

number zoom

Camera zoom.

number rot

Camera rotation in radians.

Returns:
camera

A new camera object.

Example:
camera = require 'hump.camera'
 
 -- camera looking at (100,100) with zoom 2 and rotated by 45 degrees
-cam = camera(vector(100,100), 2, math.pi/2)
-

function camera:rotate(angle)^ top

Rotate the camera by some angle. To set the angle use - camera.rot = new_angle.

This function is shortcut to camera.rot = camera.rot + angle.

Parameters:
number angle
Rotation angle in radians
Returns:
camera
The camera object.
Examples:
function love.update(dt)
+cam = camera(100,100, 2, math.pi/2)
+

function camera:rotate(angle)^ top

Rotate the camera by some angle. To set the angle use camera.rot = new_angle.

This function is shortcut to camera.rot = camera.rot + angle.

Parameters:
number angle

Rotation angle in radians

Returns:
camera

The camera object.

Example:
function love.update(dt)
     camera:rotate(dt)
 end
function love.update(dt)
-    camera:rotate(dt):move(dt)
-end

function camera:move(v)^ top

function camera:move(x, y)^ top

Move the camera by some vector. To set the position, use - camera.pos = some_vector or camera.pos.x, camera.pos.y = new_x, new_y.

This function is shortcut to camera.pos = camera.pos + v.

Parameters:
vector v
Direction to move the camera.
numbers x, y
Direction to move the camera.
Returns:
camera
The camera object.
Examples:
function love.update(dt)
-    camera:move(dt * velocity)
-end
function love.update(dt)
+    camera:rotate(dt):move(dt,dt)
+end

function camera:move(dx,dy)^ top

Move the camera by some vector. To set the position, use camera.x,camera.y = new_x,new_y.

This function is shortcut to camera.x,camera.y = camera.x+dx, camera.y+dy.

Parameters:
numbers dx,dy

Direction to move the camera.

Returns:
camera

The camera object.

Example:
function love.update(dt)
     camera:move(dt * 5, dt * 6):rotate(dt)
-end

function camera:attach()^ top

Start looking through the camera.

Apply camera transformations, i.e. move, scale and rotate everything until - camera:detach() as if looking through the camera.

Parameters:
None.
Returns:
Nothing.
Example:
function love.draw()
+end

function camera:attach()^ top

Start looking through the camera.

Apply camera transformations, i.e. move, scale and rotate everything until camera:detach() as if looking through the camera.

Parameters:
None
Returns:
Nothing
Example:
function love.draw()
     camera:attach()
     draw_world()
     cam:detach()
 
     draw_hud()
-end

function camera:detach()^ top

Stop looking through the camera.

Parameters:
None.
Returns:
Nothing.
Example:
function love.draw()
+end

function camera:detach()^ top

Stop looking through the camera.

Parameters:
None
Returns:
Nothing
Example:
function love.draw()
     camera:attach()
     draw_world()
     cam:detach()
 
     draw_hud()
-end

function camera:draw(func)^ top

Wrap a function between a camera:attach()/camera:detach() pair: -

cam:attach()
-func()
-cam:detach()

Parameters:
function func
Drawing function to be wrapped.
Returns:
Nothing.
Example:
function love.draw()
+end

function camera:draw(func)^ top

Wrap a function between a camera:attach()/camera:detach() pair:

cam:attach()func()cam:detach()

Parameters:
function func

Drawing function to be wrapped.

Returns:
Nothing
Example:
function love.draw()
     camera:draw(draw_world)
     draw_hud()
-end

function camera:worldCoords(v)^ top

function camera:worldCoords(x, y)^ top

function camera:cameraCoords(v)^ top

function camera:cameraCoords(x, y)^ top

Because a camera has a point it looks at, a rotation and a zoom factor, it - defines a coordinate system. A point now has two sets of coordinates: One - defines where the point is to be found in the game world, and the other - describes the position on the computer screen. The first set of coordinates - is called world coordinates, the second one camera coordinates. - - Sometimes it is needed to convert between the two coordinate systems, for - example to get the position of a mouse click in the game world in a strategy - game, or to see if an object is visible on the screen.

These two functions convert a point between these two coordinate systems.

Parameters:
vector v
Point to transform.
numbers x, y
Point to transform.
Returns:
vector
Transformed point.
Examples:
target = camera:worldCoords( vector(love.mouse.getPosition()) )
-selectedUnit:plotPath(target)
-
pos = cam:toCameraCoords(player.pos)
-love.graphics.line(pos.x, pos.y, love.mouse.getPosition())
-

function camera:mousepos()^ top

Shortcut to camera:worldCoords(vector(love.mouse.getPosition())).

Parameters:
None.
Returns:
vector
Mouse position in world coordinates.
Example:
target = camera:mousepos()
-selectedUnit:plotPath(target)
-
-

hump.ringbuffer^ top

hump.ringbuffer = require "Ringbuffer"
A ring-buffer is a circular array: It does not have a first nor a last item, - but it has a selected or current element.

A ring-buffer can be used to implement Tomb Raider style inventories, looping - play-lists, recurring dialogs (like a unit's answers when selecting it multiple - times in Warcraft) and generally everything that has a circular or looping - structure.

Module overview

new()
Create new ring-buffer.
ringbuffer:insert()
Insert element.
ringbuffer:remove()
Remove currently selected item.
ringbuffer:removeAt()
Remove an item.
ringbuffer:next()
Select next item.
ringbuffer:prev()
Select previous item.
ringbuffer:get()
Get currently selected item.
ringbuffer:size()
Get ringbuffer size.

function new(...)^ top

Create new ring-buffer.

The module name is a shortcut to this function.

Parameters:
mixed ...
Initial elements.
Returns:
Ringbuffer
The ring-buffer object.
Example:
Ringbuffer = require 'hump.ringbuffer'
+end

function camera:worldCoords(x, y)^ top

function camera:cameraCoords(x, y)^ top

Because a camera has a point it looks at, a rotation and a zoom factor, it defines a coordinate system. A point now has two sets of coordinates: One defines where the point is to be found in the game world, and the other describes the position on the computer screen. The first set of coordinates is called world coordinates, the second one camera coordinates. Sometimes it is needed to convert between the two coordinate systems, for example to get the position of a mouse click in the game world in a strategy game, or to see if an object is visible on the screen.

These two functions convert a point between these two coordinate systems.

Parameters:
numbers x, y

Point to transform.

Returns:
numbers

Transformed point.

Example:
x,y = camera:worldCoords(love.mouse.getPosition())
+selectedUnit:plotPath(x,y)
+
x,y = cam:toCameraCoords(player.pos)
+love.graphics.line(x, y, love.mouse.getPosition())
+

function camera:mousepos()^ top

Shortcut to camera:worldCoords(vector(love.mouse.getPosition())).

Parameters:
None
Returns:
numbers

Mouse position in world coordinates.

Example:
x,y = camera:mousepos()
+selectedUnit:plotPath(x,y)
+

hump.ringbuffer^ top

Ringbuffer = require "hump.ringbuffer"

A ring-buffer is a circular array: It does not have a first nor a last item,but it has a selected or current element.

A ring-buffer can be used to implement Tomb Raider style inventories, loopingplay-lists, recurring dialogs (like a unit's answers when selecting it multipletimes in Warcraft) and generally everything that has a circular or loopingstructure.

Module overview

new()
Create new ring-buffer.
ringbuffer:insert()
Insert element.
ringbuffer:remove()
Remove currently selected item.
ringbuffer:removeAt()
Remove an item.
ringbuffer:next()
Select next item.
ringbuffer:prev()
Select previous item.
ringbuffer:get()
Get currently selected item.
ringbuffer:size()
Get ringbuffer size.

function new(...)^ top

Create new ring-buffer.

The module name is a shortcut to this function.

Parameters:
mixed ...

Initial elements.

Returns:
Ringbuffer

The ring-buffer object.

Example:
Ringbuffer = require 'hump.ringbuffer'
 
 rb = ringbuffer(1,2,3)
-

function ringbuffer:insert(...)^ top

Insert items behind current element.

Parameters:
mixed ...
Items to insert.
Returns:
Nothing.
Example:
rb = RingbuffeR(1,5,6) -- content: 1,5,6
+

function ringbuffer:insert(...)^ top

Insert items behind current element.

Parameters:
mixed ...

Items to insert.

Returns:
Nothing
Example:
rb = RingbuffeR(1,5,6) -- content: 1,5,6
 rb:insert(2,3,4)       -- content: 1,2,3,4,5,6
-

function ringbuffer:remove()^ top

Remove current item, return it and select next element.

Parameters:
None.
Returns:
mixed
The removed item.
Example:
rb = Ringbuffer(1,2,3,4) -- content: 1,2,3,4
+

function ringbuffer:remove()^ top

Remove current item, return it and select next element.

Parameters:
None
Returns:
mixed

The removed item.

Example:
rb = Ringbuffer(1,2,3,4) -- content: 1,2,3,4
 val = rb:remove()        -- content: 2,3,4
-print(val)               -- prints `1'
-

function ringbuffer:removeAt(pos)^ top

Remove the item at a position relative to the current element.

Parameters:
number pos
Position of the item to remove.
Returns:
mixed
The removed item.
Example:
rb = Ringbuffer(1,2,3,4,5) -- content: 1,2,3,4,5
+print(val)               -- prints `1'
+

function ringbuffer:removeAt(pos)^ top

Remove the item at a position relative to the current element.

Parameters:
number pos

Position of the item to remove.

Returns:
mixed

The removed item.

Example:
rb = Ringbuffer(1,2,3,4,5) -- content: 1,2,3,4,5
 rb:removeAt(2)             -- content: 1,2,4,5
 rb:removeAt(-1)            -- content: 1,2,4
-

function ringbuffer:next()^ top

Select and return the next element.

Parameters:
None.
Returns:
mixed
The next item.
Example:
rb = Ringbuffer(1,2,3)
+

function ringbuffer:next()^ top

Select and return the next element.

Parameters:
None
Returns:
mixed

The next item.

Example:
rb = Ringbuffer(1,2,3)
 rb:next()     -- content: 2,3,1
 rb:next()     -- content: 3,1,2
 x = rb:next() -- content: 1,2,3
-print(x)      -- prints `1'
-

function ringbuffer:prev()^ top

Select and return the previous item.

Parameters:
None.
Returns:
mixed
The previous item.
Example:
rb = Ringbuffer(1,2,3)
+print(x)      -- prints `1'
+

function ringbuffer:prev()^ top

Select and return the previous item.

Parameters:
None
Returns:
mixed

The previous item.

Example:
rb = Ringbuffer(1,2,3)
 rb:prev())    -- content: 3,1,2
 rb:prev())    -- content: 2,3,1
 x = rb:prev() -- content: 1,2,3
-print(x)      -- prints `1'
-

function ringbuffer:get()^ top

Return the current element.

Parameters:
None.
Returns:
mixed
The currently selected element.
Example:
rb = Ringbuffer(1,2,3)
+print(x)      -- prints `1'
+

function ringbuffer:get()^ top

Return the current element.

Parameters:
None
Returns:
mixed

The currently selected element.

Example:
rb = Ringbuffer(1,2,3)
 rb:next()       -- content: 2,3,1
-print(rb:get()) -- prints '2'
-

function ringbuffer:size()^ top

Get number of items in the buffer

Parameters:
None.
Returns:
number
Number of items in the buffer.
Example:
rb = Ringbuffer(1,2,3)
-print(rb:size()) -- prints '3'
+print(rb:get()) -- prints '2'
+

function ringbuffer:size()^ top

Get number of items in the buffer

Parameters:
None
Returns:
number

Number of items in the buffer.

Example:
rb = Ringbuffer(1,2,3)
+print(rb:size()) -- prints '3'
 rb:remove()
-print(rb:size()) -- prints '2'
-
-
- -
-

License^ top

-
-

Yay, free software:

- -

Copyright (c) 2010 Matthias Richter

-

Permission is hereby granted, free of charge, to any person obtaining a copy - of this software and associated documentation files (the "Software"), to deal - in the Software without restriction, including without limitation the rights - to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - copies of the Software, and to permit persons to whom the Software is - furnished to do so, subject to the following conditions:

- -

The above copyright notice and this permission notice shall be included in - all copies or substantial portions of the Software.

- -

Except as contained in this notice, the name(s) of the above copyright holders - shall not be used in advertising or otherwise to promote the sale, use or - other dealings in this Software without prior written authorization.

- -

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN - THE SOFTWARE.

-
-
- - -
-

Download^ top

-
-

You can view and download the individual modules on github: vrld/hump. - You may also download the whole packed sourcecode either in - zip or - tar formats.

-

You can clone the project with Git by running: -

git clone git://github.com/vrld/hump
- Once done, tou can check for updates by running -
git pull

-
-
- - - - +print(rb:size()) -- prints '2' +
0

License^ top

Yay, free software:

Copyright (c) 2010 Matthias Richter

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Download^ top

You can view and download the individual modules on github: vrld/hump. You may also download the whole packed sourcecode either in zip or tar formats.

You can clone the project with Git by running:

git clone git://github.com/vrld/hump
Once done, you can check for updates by running
git pull

\ No newline at end of file diff --git a/makedoc.lua b/makedoc.lua new file mode 100644 index 0000000..dfcdb61 --- /dev/null +++ b/makedoc.lua @@ -0,0 +1,232 @@ +function markup(str) + local function trim(tbl) + for i=#tbl,1,-1 do + if tbl[i] == ' ' then + tbl[i] = nil + else + return tbl + end + end + end + + local parse, block, block2, element, url, title, def, dt, dd + function parse(out, next) + local c = next() + if not c then return out end + if c == ' ' or c == '\t' then return parse(out, next) end + out[#out+1] = '

' + if c == '[' then return element(out, next) end + out[#out+1] = c + return block(out, next) + end + + function block(out, next) + local c = next() + if not c then out[#out+1] = '

' return out end + if c == '[' then return element(out, next) end + if c == '\n' then return block2(out, next) end + out[#out+1] = c + return block(out, next) + end + + function block2(out, next) + local c = next() + if not c then out[#out+1] = '

' return out end + if c == '[' then return element(out, next) end + if c == '\n' then out[#out+1] = '

' return parse(out, next) end + + if c ~= ' ' and c ~= '\t' then out[#out+1] = c end + return block(out, next) + end + + function element(out, next) + local c = assert(next(), 'markup error') + if c == '^' then out[#out+1] = '' return title(out, next) end + out[#out+1] = c + return url(out, next) + end + + function title(out, next) + local c = assert(next(), 'markup error') + if c == ']' then out[#out+1] = '' return block(out, next) end + out[#out+1] = c + return title(out, next) + end + + function def(out, next) + local c = assert(next(), 'markup error') + if c == ' ' or c == '\t' or c == '\n' then return def(out, next) end + if c == ']' then out[#out+1] = '' return block(out, next) end + out[#out+1] = '
' .. c + return dt(out, next) + end + + function dt(out, next) + local c = assert(next(), 'markup error') + if c == ':' then trim(out) out[#out+1] = '
' return dd(out, next) end + out[#out+1] = c + return dt(out, next) + end + + function dd(out, next) + local c = assert(next(), 'markup error') + if c == '\n' then out[#out+1] = '
' return def(out, next) end + out[#out+1] = c + return dd(out, next) + end + + return table.concat(parse({}, str:gmatch('.'))):gsub('%b{}', function(m) + local cmd,rest = m:match('^{(.)(.+)}$') + if cmd == '#' then return ''..rest..'' end + if cmd == '%' then return '
'..rest..'
' end + if cmd == '*' then return ''..rest..'' end + if cmd == '!' then return ''..rest..'' end + return m + end) +end + + +-- PREPARE DOCUMENTATION MARKUP +local DOC = { short = {}, long = {} } + +function Module(M) + for _,field in ipairs{'name', 'title', 'short', 'long'} do + assert(M[field], "Module: Required field `"..field.."' is missing") + end + + DOC.short[#DOC.short+1] = ('
%s
%s
'):format(M.title, M.name, M.short) + + local long = {} + local function F(s, ...) long[#long+1] = select('#', ...) > 0 and s:format(...) or s end + F('', M.title, M.title) + F('
') -- outer block> + F('

%s^ top

', M.name) + F('
') -- preamble> + F('
%s = require "%s"
', M.title:gsub("^(%w+)%W.+", "%1"), M.name) + F(markup(M.long)) + F('
') --

Module overview

') -- overview> + for _,item in ipairs(M) do if item.short then F(item.short) end end + F('
') -- ') -- %s
%s
'):format(M.name, M.name, M.title) + + local long = {} + local function F(s, ...) long[#long+1] = select('#', ...) > 0 and s:format(...) or s end + F('', M.name, M.name) + F('

%s^ top

', M.title) -- section block> + F(markup(M.content)) + if M.example then + if type(M.example) ~= 'table' then M.example = {M.example} end + F('
Example:') + for i=1,#M.example do + F('
')
+			F(M.example[i])
+			F('
') + end + F('
') + end + F('
') --
%s()
%s
'):format(M.name[i], M.name[i], M.short[i]) + end + short = table.concat(short) + + local args = {} + for _,p in ipairs(M.params) do + args[#args+1] = p[2] + end + args = #args>0 and table.concat(args, ', ') or '' + + local long = {} + local function F(s, ...) long[#long+1] = select('#', ...) > 0 and s:format(...) or s end + + -- header(s) + for i=1,#M.name do F('', M.name[i], M.name[i]) end + F('
') + for i=1,#M.name do + F('

function %s(%s)^ top

', M.name[i], args) -- section block> + end + + -- description + F(markup(M.long)) + + -- parameters + F('
Parameters:
') + if #M.params == 0 then F('
None
') end + for _,p in ipairs(M.params) do + F('
%s %s
%s
', p[1], p[2], markup(p[3])) + end + F('
') + + -- return values + F('
Returns:
') + if #M.returns == 0 then F('
Nothing
') end + for _,r in ipairs(M.returns) do + F('
%s
%s
', r[1], markup(r[2])) + end + F('
') + + -- example(s) + if type(M.example) ~= 'table' then M.example = {M.example} end + F('
Example:') + for i=1,#M.example do + F('
')
+		F(M.example[i])
+		F('
') + end + F('
') + + -- sketch + if M.sketch then + F('
Sketch:
', M.sketch[1], M.sketch.width, M.sketch.height) + end + + F('
') --
hump - LÖVE Helper Utilities for More Productivity

Introduction^ top

Helper Utilities for a Multitude of Problems is a set of lightweight helpers for the awesome LÖVE Engine.

It features

  • gamestate.lua: a gamestate system.
  • timer.lua: timed function calling and interpolating functions,
  • vector.lua: a mature vector type,
  • vector-light.lua: lightweight vector math,
  • class.lua: a simple and easy class system,
  • camera.lua: a move-, zoom- and rotatable camera and
  • ringbuffer.lua: a circular container.

hump differs from other libraries in that every component is independent of the remaining ones (apart from camera.lua, which does depends on vector.lua). hump's footprint is very small and thus should fit nicely into your projects.

Documentation^ top

]]) +io.write('
'..table.concat(DOC.short):gsub('Ö', 'Ö')..'
') +io.write([[
]]) +io.write(table.concat(DOC.long):gsub('Ö', 'Ö')) +io.write[[

License^ top

Yay, free software:

Copyright (c) 2010 Matthias Richter

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Download^ top

You can view and download the individual modules on github: vrld/hump. You may also download the whole packed sourcecode either in zip or tar formats.

You can clone the project with Git by running:

git clone git://github.com/vrld/hump
Once done, you can check for updates by running
git pull

]]