hump.vector-light ================= :: vector = require "hump.vector-light" An table-free version of :doc:`hump.vector `. Instead of a vector type, ``hump.vector-light`` provides functions that operate on numbers. .. note:: Using this module instead of :doc:`hump.vector ` may result in faster code, but does so at the expense of speed of development and code readability. Unless you are absolutely sure that your code is significantly slowed down by :doc:`hump.vector `, I recommend using it instead. **Example**:: function player:update(dt) local dx,dy = 0,0 if love.keyboard.isDown('left') then dx = -1 elseif love.keyboard.isDown('right') then dx = 1 end if love.keyboard.isDown('up') then dy = -1 elseif love.keyboard.isDown('down') then dy = 1 end dx,dy = vector.normalize(dx, dy) player.velx, player.vely = vector.add(player.velx, player.vely, vector.mul(dy, dx, dy)) if vector.len(player.velx, player.vely) > player.max_velocity then player.velx, player.vely = vector.mul(player.max_velocity, vector.normalize(player.velx, player.vely) end player.x = player.x + dt * player.velx player.y = player.y + dt * player.vely end Function Reference ------------------ .. function:: vector.str(x,y) :param numbers x,y: The vector. :returns: The string representation. Produce a human-readable string of the form ``(x,y)``. Useful for debugging. **Example**:: print(vector.str(love.mouse.getPosition())) .. function:: vector.mul(s, x,y) :param number s: A scalar. :param numbers x,y: A vector. :returns: ``x*s, y*s``. Computes ``x*s,y*s``. The order of arguments is chosen so that it's possible to chain operations (see example). **Example**:: velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy)) .. function:: vector.div(s, x,y) :param number s: A scalar. :param numbers x,y: A vector. :returns: ``x/s, y/s``. Computes ``x/s,y/s``. The order of arguments is chosen so that it's possible to chain operations (see example). **Example**:: x,y = vec.div(self.zoom, x-w/2, y-h/2) .. function:: vector.add(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1+x2, x1+x2``. Computes the sum \\((x1+x2, y1+y2)\\)`` of two vectors. Meant to be used in conjunction with other functions like :func:`vector.mul`. **Example**:: player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy)) .. function:: vector.sub(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1-x2, x1-x2``. Computes the difference \\((x1-x2, y1-y2)\\) of two vectors. Meant to be used in conjunction with other functions like :func:`vector.mul`. **Example**:: dx,dy = vector.sub(400,300, love.mouse.getPosition()) .. function:: vector.permul(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1*x2, y1*y2``. Component-wise multiplication, i.e.: ``x1*x2, y1*y2``. **Example**:: x,y = vector.permul(x,y, 1,1.5) .. function:: vector.dot(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1*x2 + y1*y2``. Computes the `dot product `_ of two vectors: ``x1*x2 + y1*y2``. **Example**:: cosphi = vector.dot(rx,ry, vx,vy) .. function:: vector.cross(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1*y2 - y1*x2``. Computes the `cross product `_ of two vectors: ``x1*y2 - y1*x2``. **Example**:: parallelogram_area = vector.cross(ax,ay, bx,by) .. function:: vector.vector.det(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1*y2 - y1*x2``. Alias to :func:`vector.cross`. **Example**:: parallelogram_area = vector.det(ax,ay, bx,by) .. function:: vector.eq(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1 == x2 and y1 == y2`` Test for equality. **Example**:: if vector.eq(x1,y1, x2,y2) then be.happy() end .. function:: vector.le(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1 <= x2 and y1 <= y2``. Test for partial lexicographical order, ``<=``. **Example**:: if vector.le(x1,y1, x2,y2) then be.happy() end .. function:: vector.lt(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: ``x1 < x2 or (x1 == x2) and y1 <= y2``. Test for strict lexicographical order, ``<``. **Example**:: if vector.lt(x1,y1, x2,y2) then be.happy() end .. function:: vector.len(x,y) :param numbers x,y: The vector. :returns: Length of the vector. Get length of a vector, i.e. ``math.sqrt(x*x + y*y)``. **Example**:: distance = vector.len(love.mouse.getPosition()) .. function:: vector.len2(x,y) :param numbers x,y: The vector. :returns: Squared length of the vector. Get squared length of a vector, i.e. ``x*x + y*y``. **Example**:: -- get closest vertex to a given vector closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y) for i = 2,#vertices do local temp = vector.len2(px-vertices[i].x, py-vertices[i].y) if temp < dsq then closest, dsq = vertices[i], temp end end .. function:: vector.dist(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: The distance of the points. Get distance of two points. The same as ``vector.len(x1-x2, y1-y2)``. **Example**:: -- get closest vertex to a given vector -- slightly slower than the example using len2() closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y) for i = 2,#vertices do local temp = vector.dist(px,py, vertices[i].x,vertices[i].y) if temp < dist then closest, dist = vertices[i], temp end end .. function:: vector.dist2(x1,y1, x2,y2) :param numbers x1,y1: First vector. :param numbers x2,y2: Second vector. :returns: The squared distance of two points. Get squared distance of two points. The same as ``vector.len2(x1-x2, y1-y2)``. **Example**:: -- get closest vertex to a given vector closest, dsq = vertices[1], vector.dist2(px,py, vertices[1].x,vertices[1].y) for i = 2,#vertices do local temp = vector.dist2(px,py, vertices[i].x,vertices[i].y) if temp < dsq then closest, dsq = vertices[i], temp end end .. function:: vector.normalize(x,y) :param numbers x,y: The vector. :returns: Vector with same direction as the input vector, but length 1. Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1. **Example**:: dx,dy = vector.normalize(vx,vy) .. function:: vector.rotate(phi, x,y) :param number phi: Rotation angle in radians. :param numbers x,y: The vector. :returns: The rotated vector Get a rotated vector. **Example**:: -- approximate a circle circle = {} for i = 1,30 do local phi = 2 * math.pi * i / 30 circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1) end .. function:: vector.perpendicular(x,y) :param numbers x,y: The vector. :returns: A vector perpendicular to the input vector Quick rotation by 90°. The same (but faster) as ``vector.rotate(math.pi/2, x,y)``. **Example**:: nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay)) .. function:: vector.project(x,y, u,v) :param numbers x,y: The vector to project. :param numbers u,v: The vector to project onto. :returns: The projected vector. Project vector onto another vector. **Example**:: vx_p,vy_p = vector.project(vx,vy, ax,ay) .. function:: vector.mirror(x,y, u,v) :param numbers x,y: The vector to mirror. :param numbers u,v: The vector defining the axis. :returns: The mirrored vector. Mirrors vector on the axis defined by the other vector. **Example**:: vx,vy = vector.mirror(vx,vy, surface.x,surface.y) .. function:: vector.angleTo(ox,y, u,v) :param numbers x,y: Vector to measure the angle. :param numbers u,v (optional): Reference vector. :returns: Angle in radians. Measures the angle between two vectors. ``u`` and ``v`` default to ``0`` if omitted, i.e. the function returns the angle to the coordinate system. **Example**:: lean = vector.angleTo(self.upx, self.upy, 0,1) if lean > .1 then self:fallOver() end .. function:: vector.trim(max_length, x,y) :param number max_length: Maximum allowed length of the vector. :param numbers x,y: Vector to trum. :returns: The trimmed vector. Trim the vector to ``max_length``, i.e. return a vector that points in the same direction as the source vector, but has a magnitude smaller or equal to ``max_length``. **Example**:: vel_x, vel_y = vector.trim(299792458, vector.add(vel_x, vel_y, vector.mul(mass * dt, force_x, force_y)))