Introduction^ top

Helper Utilities for a Multitude of Problems is a set of lightweight helpers for the awesome LÖVE Engine.

It features

hump differs from other libraries in that every component is independent of the remaining ones (apart from camera.lua, which does depends on vector.lua). hump's footprint is very small and thus should fit nicely into your projects.

Documentation^ top

hump.gamestate
A gamestate system
hump.timer
Delayed function calls and helpers for interpolating functions.
hump.vector
2D vector math.
hump.vector-light
Lightweight 2D vector math.
hump.class
Class-based object orientated programming for Lua
hump.camera
A camera for LÖVE
hump.ringbuffer
A data structure that wraps around itself.

hump.gamestate^ top

Gamestate = require "hump.gamestate"

A gamestate encapsulates independent data an behaviour into a single entity.

A typical game could consist of a menu-state, a level-state and a game-over-state.

Module overview

callbacks
Gamestate Callbacks
new()
Create a new gamestate.
switch()
Switch to gamestate.
update()
Update current gamestate.
draw()
Draw the current gamestate.
focus()
Inform current gamestate of a focus event.
keypressed()
Inform current gamestate of a keypressed event.
keyreleased()
Inform current gamestate of a keyreleased event.
mousepressed()
Inform current gamestate of a mousepressed event.
mousereleased()
Inform current gamestate of a mousereleased event.
joystickpressed()
Inform current gamestate of a joystickpressed event.
joystickreleased()
Inform current gamestate of a joystickreleased event.
quit()
Inform current gamestate of a quit event.
registerEvents()
Automatically do all of the above when needed.

Gamestate Callbacks^ top

A gamestate can define (nearly) all callbacks that LÖVE defines. In addition, there are callbacks for entering and leaving a state.:

init()
Called once before entering the state. See switch().
enter(previous, ...)
Called when entering the state. See switch().
leave()
Called when leaving a state. See switch().
update()
Update the game state. Called every frame.
draw()
Draw on the screen. Called every frame.
focus()
Called if the window gets or looses focus.
keypressed()
Triggered when a key is pressed.
keyreleased()
Triggered when a key is released.
mousepressed()
Triggered when a mouse button is pressed.
mousereleased()
Triggered when a mouse button is released.
joystickpressed()
Triggered when a joystick button is pressed.
joystickreleased()
Triggered when a joystick button is released.
quit()
Called on quitting the game. Only called on the active gamestate.

When using registerEvents(), all these callbacks will receive the same arguments as the LÖVE callbacks do.

Example:
menu = Gamestate.new()
function menu:init() -- run only once
    self.background = love.graphics.newImage('bg.jpg')
    Buttons.initialize()
end

function menu:enter(previous) -- run every time the state is entered
    Buttons.setActive(Buttons.start)
end

function menu:update(dt)
    Buttons.update(dt)
end

function menu:draw()
    love.graphics.draw(self.background, 0, 0)
    Buttons.draw()
end

function menu:keyreleased(key)
    if key == 'up' then
        Buttons.selectPrevious()
    elseif key == 'down' then
        Buttons.selectNext()
    elseif
        Buttons.active:onClick()
    end
end

function menu:mousereleased(x,y, mouse_btn)
    local button = Buttons.hovered(x,y)
    if button then
        Button.select(button)
        if mouse_btn == 'l' then
            button:onClick()
        end
    end
end

function new()^ top

Declare a new gamestate. A gamestate can define several callbacks.

Parameters:
None
Returns:
Gamestate
The new gamestate.
Example:
menu = Gamestate.new()

function switch(to, ...)^ top

Switch to a gamestate, with any additional arguments passed to the new state.

Switching a gamestate will call the leave() callback on the current gamestate, replace the current gamestate with to, call the init() function if the state was not yet inialized and finally call enter(old_state, ...) on the new gamestate.

Parameters:
Gamestate to
Target gamestate.
mixed ...
Additional arguments to pass to to:enter().
Returns:
mixed
The results of to:enter()
Example:
Gamestate.switch(game, level_two)

function update(...)^ top

function draw(...)^ top

function focus(...)^ top

function keypressed(...)^ top

function keyreleased(...)^ top

function mousepressed(...)^ top

function mousereleased(...)^ top

function joystickpressed(...)^ top

function joystickreleased(...)^ top

function quit(...)^ top

Calls the corresponding function on the current gamestate (see callbacks).

Only needed when not using registerEvents().

Parameters:
mixed ...
Arguments to pass to the corresponding callback.
Returns:
mixed
The results of the callback function.
Example:
function love.update(dt)
    Gamestate.update(dt)
end

function love.draw()
    local mx,my = love.mouse.getPosition()
    Gamestate.draw(mx, my)
end

function love.keypressed(key, code)
    Gamestate.keypressed(key, code)
end

function registerEvents(callbacks)^ top

Register love callbacks to call Gamestate.update(), Gamestate.draw(), etc. automatically.

This is by done by overwriting the love callbacks, e.g.:

local old_update = love.update
function love.update(dt)
    old_update(dt)
    Gamestate.current:update(dt)
end

Note: Only works when called in love.load() or any other function that is executedafter the whole file is loaded.

Parameters:
table callbacks (optional)
Names of the callbacks to register. If omitted, register all callbacks.
Returns:
Nothing
Example:
function love.load()
    Gamestate.registerEvents()
    Gamestate.switch(menu)
end
function love.load()
    Gamestate.registerEvents{'draw', 'update', 'quit'}
    Gamestate.switch(menu)
end

hump.timer^ top

Timer = require "hump.timer"

hump.timer provides a simple interface to use delayed functions, i.e.functions that will be executed after some amount time has passed. Forexample, you can use a timer to set the player invincible for a shortamount of time.

In addition, the module offers facilities to create functions thatinterpolate or oscillate over time. An interpolator could fade the color ora text message, whereas an oscillator could be used for the movement offoes in a shmup.

Module overview

new()
Create new timer instance.
add()
Schedule a function.
addPeriodic()
Add a periodic function.
cancel()
Cancel a scheduled function.
clear()
Remove all timed and periodic functions.
update()
Update scheduled functions.
Interpolator()
Create a new interpolating function.
Oscillator()
Create a new oscillating function.

function new()^ top

Creates a new timer instance that is independent of the global timer: It will manage it's own list of scheduled functions and does not in any way affect the the global timer. Likewise, the global timer does not affect the timer instance.

Note that timer instances use the colon-notation (e.g. instance:update(dt)), while the global timer uses the dot-notation (e.g. Timer.update(dt)).

Parameters:
None
Returns:
Timer
A timer instance
Example:
menuTimer = Timer.new()

function add(delay, func)^ top

function instance:add(delay, func)^ top

Schedule a function. The function will be executed after delay seconds have elapsed, given that update(dt) is called every frame.

Note that there is no guarantee that the delay will not be exceeded, it is only guaranteed that the function will not be executed before the delay has passed.

It is an error to schedule a function again if it is not yet finished or canceled.

func will receive itself as only parameter. This is useful to implement periodic behavior (see the example).

Parameters:
number delay
Number of seconds the function will be delayed.
function func
The function to be delayed.
Returns:
function
The timer handle.
Example:
-- grant the player 5 seconds of immortality
player.isInvincible = true
Timer.add(5, function() player.isInvincible = false end)
-- print "foo" every second. See addPeriodic.
Timer.add(1, function(func) print("foo") Timer.add(1, func) end)
menuTimer:add(1, finishAnimation)

function addPeriodic(delay, func, count)^ top

function instance:addPeriodic(delay, func, count)^ top

Add a function that will be called count times every delay seconds.

If count is omitted, the function will be called until it returns false or clear() is called.

Parameters:
number delay
Number of seconds between two consecutive function calls.
function func
The function to be called periodically.
number count (optional)
Number of times the function is to be called.
Returns:
function
The timer handle.
Example:
Timer.addPeriodic(1, function() lamp:toggleLight() end)
mothership_timer:addPeriodic(0.3, function() self:spawnFighter() end, 5)
-- flicker player's image as long as he is invincible
Timer.addPeriodic(0.1, function()
    player:flipImage()
    return player.isInvincible
end)

function cancel(func)^ top

function instance:cancel(func)^ top

Prevent a timer from being executed in the future.

Always use the function handle returned by add()/addPeriodic() to cancel a timer.

Never use this inside a scheduled function.

Parameters:
function func
The function to be canceled.
Returns:
Nothing
Example:
function tick()
    print('tick... tock...')
end
handle = Timer.addPeriodic(1, tick)
-- later
Timer.cancel(handle) -- NOT: Timer.cancel(tick)

function clear()^ top

function instance:clear()^ top

Remove all timed and periodic functions. Functions that have not yet been executed will discarded. Never use this inside a scheduled function.

Parameters:
None
Returns:
Nothing
Example:
Timer.clear()

function update(dt)^ top

function instance:update(dt)^ top

Update timers and execute functions if the deadline is reached. Use this in love.update(dt).

Parameters:
number dt
Time that has passed since the last update().
Returns:
Nothing
Example:
function love.update(dt)
    do_stuff()
    Timer.update(dt)
end

function Interpolator(length, func)^ top

Create a wrapper for an interpolating function, i.e. a function that acts depending on how much time has passed.

The wrapper will have the prototype:

function wrapper(dt, ...)
where dt is the time that has passed since the last call of the wrapper and ... are arguments passed to the interpolating function. It will return whatever the interpolating functions returns if the interpolation is not yet finished or nil if the interpolation is done.

The prototype of the interpolating function is:

function interpolator(fraction, ...)
where fraction is a number between 0 and 1 depending on how much time has passed and ... are additional arguments supplied to the wrapper.

Parameters:
number length
Interpolation length in seconds.
function func
Interpolating function.
Returns:
function
The wrapper function.
Example:
fader = Timer.Interpolator(5, function(frac, r,g,b)
    love.graphics.setBackgroundColor(frac*r,frac*g,frac*b)
end)

function love.update(dt)
    fader(dt, 255,255,255)
end

function Oscillator(length, func)^ top

Create a wrapper for an oscillating function, which is basically a looping interpolating function.

The function prototypes are the same as with Interpolator():

function wrapper(dt, ...)
function oscillator(fraction, ...)

As with Interpolator, the wrapper will return whatever oscillator() returns.

Parameters:
number length
Length of one interpolation period.
function func
Oscillating function.
Returns:
function
The wrapper function.
Example:
mover = Timer.Oscillator(10, function(frac)
   return 400 + 300 * math.sin(2*math.pi*frac)
end)

local xpos = 100
function love.update(dt)
    xpos = mover(dt)
end

function love.draw()
    love.graphics.circle('fill', xpos, 300, 80, 36)
end

hump.vector^ top

vector = require "hump.vector"

A handy 2D vector class providing most of the things you do with vectors.

You can access the individual coordinates by using vec.x and vec.y.

Module overview

operators
Arithmetics and relations
new()
Create a new vector.
isvector()
Test if value is a vector.
vector:clone()
Copy a vector.
vector:unpack()
Extract coordinates.
vector:permul()
Per element multiplication.
vector:len()
Get length.
vector:len2()
Get squared length.
vector:dist()
Distance to other vector.
vector:normalized()
Get normalized vector.
vector:normalize_inplace()
Normalize vector in-place.
vector:rotated()
Get rotated vector.
vector:rotate_inplace()
Rotate vector in-place.
vector:perpendicular()
Get perpendicular vector.
vector:projectOn()
Get projection onto another vector.
vector:mirrorOn()
Mirrors vector on other vector
vector:cross()
Cross product of two vectors.

Arithmetics and relations^ top

Vector arithmetic is implemented by using __add, __mul and other metamethods:

vector + vector = vector
Component wise sum.
vector - vector = vector
Component wise difference.
vector * vector = number
Dot product.
number * vector = vector
Scalar multiplication (scaling).
vector * number = vector
Scalar multiplication.
vector / number = vector
Scalar multiplication.

Relational operators are defined, too:

a == b
true, if a.x == b.x and a.y == b.y.
a <= b
true, if a.x <= b.x and a.y <= b.y.
a < b
Lexical sort: true, if a.x < b.x or a.x == b.x and a.y < b.y.

Example:
-- acceleration, player.velocity and player.position are vectors
acceleration = vector(0,-9)
player.velocity = player.velocity + acceleration * dt
player.position = player.position + player.velocity * dt

function new(x,y)^ top

Create a new vector.

Parameters:
numbers x,y
Coordinates.
Returns:
vector
The vector.
Example:
a = vector.new(10,10)
-- as a shortcut, you can call the module like a function:
vector = require "hump.vector"
a = vector(10,10)

function isvector(v)^ top

Test whether a variable is a vector.

Parameters:
mixed v
The variable to test.
Returns:
boolean
true if v is a vector, false otherwise
Example:
if not vector.isvector(v) then
    v = vector(v,0)
end

function vector:clone()^ top

Copy a vector. Simply assigning a vector a vector to a variable will create a reference, so when modifying the vector referenced by the new variable would also change the old one:

a = vector(1,1) -- create vector
b = a           -- b references a
c = a:clone()   -- c is a copy of a
b.x = 0         -- changes a,b and c
print(a,b,c)    -- prints '(1,0), (1,0), (1,1)'

Parameters:
None
Returns:
vector
Copy of the vector
Example:
copy = original:clone

function vector:unpack()^ top

Extract coordinates.

Parameters:
None
Returns:
numbers
The coordinates
Example:
x,y = pos:unpack()
love.graphics.draw(self.image, self.pos:unpack())

function vector:permul(other)^ top

Multiplies vectors coordinate wise, i.e. result = vector(a.x * b.x, a.y * b.y).

This does not change either argument vectors, but creates a new one.

Parameters:
vector other
The other vector
Returns:
vector
The new vector as described above
Example:
scaled = original:permul(vector(1,1.5))

function vector:len()^ top

Get length of a vector, i.e. math.sqrt(vec.x * vec.x + vec.y * vec.y).

Parameters:
None
Returns:
number
Length of the vector.
Example:
distance = (a - b):len()

function vector:len2()^ top

Get squared length of a vector, i.e. vec.x * vec.x + vec.y * vec.y.

Parameters:
None
Returns:
number
Squared length of the vector.
Example:
-- get closest vertex to a given vector
closest, dsq = vertices[1], (pos - vertices[1]):len2()
for i = 2,#vertices do
    local temp = (pos - vertices[i]):len2()
    if temp < dsq then
        closest, dsq = vertices[i], temp
    end
end

function vector:dist(other)^ top

Get distance of two vectors. The same as (a - b):len().

Parameters:
vector other
Other vector to measure the distance to.
Returns:
number
The distance of the vectors.
Example:
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], pos:dist(vertices[1])
for i = 2,#vertices do
    local temp = pos:dist(vertices[i])
    if temp < dist then
        closest, dist = vertices[i], temp
    end
end

function vector:normalized()^ top

Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1.

This does not change the input vector, but creates a new vector.

Parameters:
None
Returns:
vector
Vector with same direction as the input vector, but length 1.
Example:
direction = velocity:normalized()

function vector:normalize_inplace()^ top

Normalize a vector, i.e. make the vector unit length. Great to use on intermediate results.

This modifies the vector. If in doubt, use vector:normalized().

Parameters:
None
Returns:
vector
Itself - the normalized vector
Example:
normal = (b - a):perpendicular():normalize_inplace()

function vector:rotated(phi)^ top

Get a rotated vector.

This does not change the input vector, but creates a new vector.

Parameters:
number phi
Rotation angle in radians.
Returns:
vector
The rotated vector
Example:
-- approximate a circle
circle = {}
for i = 1,30 do
    local phi = 2 * math.pi * i / 30
    circle[#circle+1] = vector(0,1):rotated(phi)
end
Sketch:

function vector:rotate_inplace(phi)^ top

Rotate a vector in-place. Great to use on intermediate results.

This modifies the vector. If in doubt, use vector:rotate()

Parameters:
number phi
Rotation angle in radians.
Returns:
vector
Itself - the rotated vector
Example:
-- ongoing rotation
spawner.direction:rotate_inplace(dt)

function vector:perpendicular()^ top

Quick rotation by 90°. Creates a new vector. The same (but faster) as vec:rotate(math.pi/2)

Parameters:
None
Returns:
vector
A vector perpendicular to the input vector
Example:
normal = (b - a):perpendicular():normalize_inplace()
Sketch:

function vector:projectOn(v)^ top

Project vector onto another vector (see sketch).

Parameters:
vector v
The vector to project on.
Returns:
vector
The projected vector.
Example:
velocity_component = velocity:projectOn(axis)
Sketch:

function vector:mirrorOn(v)^ top

Mirrors vector on the axis defined by the other vector.

Parameters:
vector v
The vector to mirror on.
Returns:
vector
The mirrored vector.
Example:
deflected_velocity = ball.velocity:mirrorOn(surface_normal)
Sketch:

function vector:cross(other)^ top

Get cross product of both vectors. Equals the area of the parallelogram spanned by both vectors.

Parameters:
vector other
Vector to compute the cross product with.
Returns:
number
Cross product of both vectors.
Example:
parallelogram_area = a:cross(b)
Sketch:

hump.vector-light^ top

vector = require "hump.vector-light"

An table-free version of hump.vector. Instead of a vector class, hump.vector-light provides functions that operate on numbers.

Using this module instead of vector might result in faster code, but does so at the expense of readability. Unless you are sure that it causes a significant performance penalty, I recommend to use hump.vector.

Module overview

str()
String representation.
mul()
Product of a vector and a scalar.
div()
Product of a vector and the inverse of a scalar.
add()
Sum of two vectors.
sub()
Difference of two vectors.
permul()
Per element multiplication.
dot()
[^http://en.wikipedia.org/wiki/Dot_product Dot product]
det()
Cross product
cross()
Cross product
eq()
Equality.
le()
Partial lexical order.
lt()
Strict lexical order.
len()
Get length.
len2()
Get squared length.
dist()
Distance of two points.
normalize()
Normalize vector.
rotate()
Rotate vector.
perpendicular()
Get perpendicular vector.
project()
Project projection onto another vector.
mirror()
Mirrors vector on other vector.

function str(x,y)^ top

Transforms a vector to a string of the form (x,y).

Parameters:
numbers x,y
The vector
Returns:
string
The string representation
Example:
print(vector.str(love.mouse.getPosition()))

function mul(s, x,y)^ top

function div(s, x,y)^ top

Computes x*s,y*s and x/s,y/s respectively. The order of arguments is chosen so that it's possible to chain multiple operations (see example).

Parameters:
number s
The scalar.
numbers x,y
The vector.
Returns:
numbers
The result of the operation.
Example:
velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy))
x,y = vec.div(self.zoom, x-w/2, y-h/2)

function add(x1,y1, x2,y2)^ top

function sub(x1,y1, x2,y2)^ top

Computes the sum/difference of vectors. Same as x1+x2,y1+y2 and x1-x2,y1-y2 respectively. Meant to be used in conjunction with other functions.

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
numbers
The result of the operation.
Example:
player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy))
dx,dy = vector.sub(400,300, love.mouse.getPosition())

function permul(x1,y1, x2,y2)^ top

Multiplies vectors coordinate wise, i.e. x1*x2,y1*y2.

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
numbers
The result of the operation.
Example:
x,y = vector.permul(x,y, 1,1.5)

function dot(x1,y1, x2,y2)^ top

Computes the dot product of two vectors, x1*x2+y1*y2.

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
number
The dot product.
Example:
cosphi = vector.dot(rx,ry, vx,vy)

function det(x1,y1, x2,y2)^ top

function cross(x1,y1, x2,y2)^ top

Computes the cross product/determinant of two vectors, x1*y2-y1*x2.

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
number
The cross product.
Example:
parallelogram_area = vector.det(ax,ay, bx,by)

function eq(x1,y1, x2,y2)^ top

function le(x1,y1, x2,y2)^ top

function lt(x1,y1, x2,y2)^ top

Compares two vectors according to

vector.eq(x1,y1, x2,y2)
x1 == x2 and y1 == y2
vector.le(x1,y1, x2,y2)
x1 <= x2 and y1 <= y2
vector.lt(x1,y1, x2,y2)
x1 < x2 or (x1 == x2) and y1 <= y2

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
boolean
The result of the operation.
Example:
...

function len(x,y)^ top

Get length of a vector, i.e. math.sqrt(x*x + y*y).

Parameters:
numbers x,y
The vector.
Returns:
number
Length of the vector.
Example:
distance = vector.len(love.mouse.getPosition())

function len2(x,y)^ top

Get squared length of a vector, i.e. x*x + y*y.

Parameters:
numbers x,y
The vector.
Returns:
number
Squared length of the vector.
Example:
-- get closest vertex to a given vector
closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y)
for i = 2,#vertices do
    local temp = vector.len2(px-vertices[i].x, py-vertices[i].y)
    if temp < dsq then
        closest, dsq = vertices[i], temp
    end
end

function dist(x1,y1, x2,y2)^ top

Get distance of two points. The same as vector.len(x1-x2, y1-y2).

Parameters:
numbers x1,y1
First vector.
numbers x2,y2
Second vector.
Returns:
number
The distance of the points.
Example:
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y)
for i = 2,#vertices do
    local temp = vector.dist(px,py, vertices[i].x,vertices[i].y)
    if temp < dist then
        closest, dist = vertices[i], temp
    end
end

function normalize(x,y)^ top

Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1.

Parameters:
numbers x,y
The vector.
Returns:
numbers
Vector with same direction as the input vector, but length 1.
Example:
dx,dy = vector.normalize(vx,vy)

function rotate(phi, x,y)^ top

Get a rotated vector.

Parameters:
number phi
Rotation angle in radians.
numbers x,y
The vector.
Returns:
numbers
The rotated vector
Example:
-- approximate a circle
circle = {}
for i = 1,30 do
    local phi = 2 * math.pi * i / 30
    circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1)
end

function perpendicular(x,y)^ top

Quick rotation by 90°. The same (but faster) as vector.rotate(math.pi/2, x,y)

Parameters:
numbers x,y
The vector.
Returns:
numbers
A vector perpendicular to the input vector
Example:
nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay))

function project(x,y, u,v)^ top

Project vector onto another vector.

Parameters:
numbers x,y
The vector to project.
numbers u,v
The vector to project onto.
Returns:
numbers
The projected vector.
Example:
vx_p,vy_p = vector.project(vx,vy, ax,ay)

function mirror(x,y, u,v)^ top

Mirrors vector on the axis defined by the other vector.

Parameters:
numbers x,y
The vector to mirror.
numbers u,v
The vector defining the axis.
Returns:
numbers
The mirrored vector.
Example:
vx,vy = vector.mirror(vx,vy, surface.x,surface.y)

hump.class^ top

Class = require "hump.class"

A small, fast class implementation with multiple inheritance support

Module overview

new()
Declare a new class.
class.construct()
Call class constructor.
class:inherit()
Explicit class inheritance/mixin support.
object:is_a()
Test object's type.
caveats
Caveats

function new{constructor, name = the_name, inherits = super}^ top

Declare a new class.

The constructor will receive the newly create object as first argument.

You can check if an object is an instance of a class using object:is_a().

The name of the variable that holds the module can be used as a shortcut to new() (see example).

Parameters:
function constructor (optional)
Class constructor. Can be accessed with theclass.construct(object, ...)
string the_name (optional)
Class name (used only to make the class compliant to tostring().
class or table of classes super (optional)
Classes to inherit from. Can either be a single class or a table of classes
Returns:
class
The class
Example:
Class = require 'hump.class' -- `Class' is now a shortcut to new()

-- define unnamed class
Feline = Class{function(self, size, weight)
    self.size = size
    self.weight = weight
end}
print(Feline) -- prints '

-- define class method
function Feline:stats()
    return string.format("size: %.02f, weight %.02f", self.size, self.weight)
end

-- create two objects
garfield = Feline(.7, 45)
felix = Feline(.8, 12)

print("Garfield: " .. garfield:stats(), "Felix: " .. felix:stats())
Class = require 'hump.class'

-- define class with explicit name 'Feline'
Feline = Class{name = "Feline", function(self, size, weight)
    self.size = size
    self.weight = weight
end}

garfield = Feline(.7, 45)
print(Feline, garfield) -- prints '	>'
Class = require 'hump.class'
A = Class{}
function A:foo()
    print('foo')
end

B = Class{}
function B:bar()
    print('bar')
end

-- single inheritance
C = Class{inherits = A}
instance = C()
instance:foo() -- prints 'foo'

-- multiple inheritance
D = Class{inherits = {A,B}}
instance = D()
instance:foo() -- prints 'foo'
instance:bar() -- prints 'bar'

function class.construct(object, ...)^ top

Calls class constructor of a class on an object

Derived classes use this function their constructors to initialize the parent class(es) portions of the object.

Parameters:
Object object
The object. Usually self.
mixed ...
Arguments to pass to the constructor
Returns:
mixed
Whatever the parent class constructor returns
Example:
Class = require 'hump.class'

Shape = Class{function(self, area)
    self.area = area
end}
function Shape:__tostring()
    return "area = " .. self.area
end

Rectangle = Class{inherits = Shape, function(self, width, height)
    Shape.construct(self, width * height)
    self.width  = width
    self.height = height
end}
function Rectangle:__tostring()
    local strs = {
        "width = " .. self.width,
        "height = " .. self.height,
        Shape.__tostring(self)
    },
    return table.concat(strs, ", ")
end

print( Rectangle(2,4) ) -- prints 'width = 2, height = 4, area = 8'
Menu = Class{function(self)
    self.entries = {}
end}
function Menu:add(title, entry)
    self.entries[#self.entries + 1] = entry
end
function Menu:display()
    -- ...
end

Entry = Class{function(self, title, command)
    self.title = title
    self.command = command
end}
function Entry:execute()
    return self.command()
end

Submenu = Class{inherits = {Menu, Entry}, function(self, title)
    Menu.construct(self)
    -- redirect self:execute() to self:display()
    Entry.construct(self, title, Menu.display)
end}

function class:inherit(...)^ top

Inherit functions and variables of another class, if they are not already defined for the class. This is done by simply copying the functions and variables over to the subclass. The Lua rules for copying apply (i.e. tables are referenced, functions and primitive types are copied by value).

Be careful with changing table values in a subclass: This will change the value in the parent class too.

If more than one parent class is specified, inherit from all of these, in order of occurrence. That means that when two parent classes define the same method, the one from the first class will be inherited.

Note: class:inherit() doesn't actually care if the arguments supplied are hump classes. Just any table will work.

Parameters:
tables ...
Parent classes to inherit from
Returns:
Nothing
Example:
Class = require 'hump.class'

Entity = Class{function(self)
    GameObjects.register(self)
end}

Collidable = {
    dispatch_collision = function(self, other, dx, dy)
        if self.collision_handler[other.type])
            return collision_handler[other.type](self, other, dx, dy)
        end
        return collision_handler["*"](self, other, dx, dy)
    end,

    collision_handler = {["*"] = function() end},
}

Spaceship = Class{function(self)
    self.type = "Spaceship"
    -- ...
end}

-- make Spaceship collidable
Spaceship:inherit(Collidable)

function Spaceship:collision_handler["Spaceship"](other, dx, dy)
    -- ...
end

function object:is_a(cls)^ top

Tests whether an object is an instance of a class.

Parameters:
class cls
Class to test. Note: this is the class itself, not the name of the class.
Returns:
Boolean
true if the object is an instance of the class, false otherwise
Example:
Class = require 'hump.class'

A = Class{}
B = Class{inherits=A}
C = Class{inherits=B}
a, b, c = A(), B(), C()
print(a:is_a(A), a:is_a(B), a:is_a(C)) --> true   false  false
print(b:is_a(A), b:is_a(B), b:is_a(C)) --> true   true   false
print(c:is_a(A), c:is_a(B), c:is_a(C)) --> true   true   true

D = Class{}
E = Class{inherits={B,D}}
d, e = D(), E()
print(d:is_a(A), d:is_a(B), d:is_a(D)) --> false  false  true
print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true   true   true

Caveats^ top

Be careful when using metamethods like __add or __mul: If subclass inherits those methods from a superclass, but does not overwrite them, the result of the operation may be of the type superclass. Consider the following:

Class = require 'hump.class'

A = Class{function(self, x) self.x = x end}
function A:__add(other) return A(self.x + other.x) end
function A:show() print("A:", self.x) end

B = Class{inherits = A, function(self, x, y) A.construct(self, x) self.y = y end}
function B:show() print("B:", self.x, self.y) end
function B:foo() print("foo") end

one, two = B(1,2), B(3,4)
result = one + two
result:show()   -- prints "A:    4"
result:foo()    -- error: method does not exist

Note that while you can define the __index metamethod of the class, this is not a good idea: It will break the class. To add a custom __index metamethod without breaking the class system, you have to use rawget(). But beware that this won't affect subclasses:

Class = require 'hump.class'

A = Class{}
function A:foo() print('bar') end

function A:__index(key)
    print(key)
    return rawget(A, key)
end

instance = A()
instance:foo() -- prints foo  bar

B = Class{inherits = A}
instance = B()
instance:foo() -- prints only foo

hump.camera^ top

Camera = require "hump.camera"

Depends on hump.vector-light

A camera utility for LÖVE. A camera can "look" at a position. It can zoom in andout and it can rotate it's view. In the background, this is done by actuallymoving, scaling and rotating everything in the game world. But don't worry aboutthat.

Module overview

new()
Create a new camera object.
camera:rotate()
Rotate camera object.
camera:move()
Move camera object.
camera:attach()
Attach camera object.
camera:detach()
Detach camera object.
camera:draw()
Attach, draw and detach.
camera:worldCoords()
Convert point to world coordinates.
camera:cameraCoords()
Convert point to camera coordinates.
camera:mousepos()
Get mouse position in world coordinates.

function new(x,y, zoom, rot)^ top

Creates a new camera object. You can access the camera position using camera.x, camera.y, the zoom using camera.zoom and the rotation using camera.rot.

The module variable name can be used at a shortcut to new().

Parameters:
numbers x,y
Point for the camera to look at.
number zoom
Camera zoom.
number rot
Camera rotation in radians.
Returns:
camera
A new camera object.
Example:
camera = require 'hump.camera'

-- camera looking at (100,100) with zoom 2 and rotated by 45 degrees
cam = camera(100,100, 2, math.pi/2)

function camera:rotate(angle)^ top

Rotate the camera by some angle. To set the angle use camera.rot = new_angle.

This function is shortcut to camera.rot = camera.rot + angle.

Parameters:
number angle
Rotation angle in radians
Returns:
camera
The camera object.
Example:
function love.update(dt)
    camera:rotate(dt)
end
function love.update(dt)
    camera:rotate(dt):move(dt,dt)
end

function camera:move(dx,dy)^ top

Move the camera by some vector. To set the position, use camera.x,camera.y = new_x,new_y.

This function is shortcut to camera.x,camera.y = camera.x+dx, camera.y+dy.

Parameters:
numbers dx,dy
Direction to move the camera.
Returns:
camera
The camera object.
Example:
function love.update(dt)
    camera:move(dt * 5, dt * 6):rotate(dt)
end

function camera:attach()^ top

Start looking through the camera.

Apply camera transformations, i.e. move, scale and rotate everything until camera:detach() as if looking through the camera.

Parameters:
None
Returns:
Nothing
Example:
function love.draw()
    camera:attach()
    draw_world()
    cam:detach()

    draw_hud()
end

function camera:detach()^ top

Stop looking through the camera.

Parameters:
None
Returns:
Nothing
Example:
function love.draw()
    camera:attach()
    draw_world()
    cam:detach()

    draw_hud()
end

function camera:draw(func)^ top

Wrap a function between a camera:attach()/camera:detach() pair:

cam:attach()
func()
cam:detach()

Parameters:
function func
Drawing function to be wrapped.
Returns:
Nothing
Example:
function love.draw()
    camera:draw(draw_world)
    draw_hud()
end

function camera:worldCoords(x, y)^ top

function camera:cameraCoords(x, y)^ top

Because a camera has a point it looks at, a rotation and a zoom factor, it defines a coordinate system. A point now has two sets of coordinates: One defines where the point is to be found in the game world, and the other describes the position on the computer screen. The first set of coordinates is called world coordinates, the second one camera coordinates. Sometimes it is needed to convert between the two coordinate systems, for example to get the position of a mouse click in the game world in a strategy game, or to see if an object is visible on the screen.

These two functions convert a point between these two coordinate systems.

Parameters:
numbers x, y
Point to transform.
Returns:
numbers
Transformed point.
Example:
x,y = camera:worldCoords(love.mouse.getPosition())
selectedUnit:plotPath(x,y)
x,y = cam:toCameraCoords(player.pos)
love.graphics.line(x, y, love.mouse.getPosition())

function camera:mousepos()^ top

Shortcut to camera:worldCoords(love.mouse.getPosition()).

Parameters:
None
Returns:
numbers
Mouse position in world coordinates.
Example:
x,y = camera:mousepos()
selectedUnit:plotPath(x,y)

hump.ringbuffer^ top

Ringbuffer = require "hump.ringbuffer"

A ring-buffer is a circular array: It does not have a first nor a last item,but it has a selected or current element.

A ring-buffer can be used to implement Tomb Raider style inventories, loopingplay-lists, recurring dialogs (like a unit's answers when selecting it multipletimes in Warcraft) and generally everything that has a circular or loopingstructure.

Module overview

new()
Create new ring-buffer.
ringbuffer:insert()
Insert element.
ringbuffer:remove()
Remove currently selected item.
ringbuffer:removeAt()
Remove an item.
ringbuffer:next()
Select next item.
ringbuffer:prev()
Select previous item.
ringbuffer:get()
Get currently selected item.
ringbuffer:size()
Get ringbuffer size.

function new(...)^ top

Create new ring-buffer.

The module name is a shortcut to this function.

Parameters:
mixed ...
Initial elements.
Returns:
Ringbuffer
The ring-buffer object.
Example:
Ringbuffer = require 'hump.ringbuffer'

rb = ringbuffer(1,2,3)

function ringbuffer:insert(...)^ top

Insert items behind current element.

Parameters:
mixed ...
Items to insert.
Returns:
Nothing
Example:
rb = RingbuffeR(1,5,6) -- content: 1,5,6
rb:insert(2,3,4)       -- content: 1,2,3,4,5,6

function ringbuffer:remove()^ top

Remove current item, return it and select next element.

Parameters:
None
Returns:
mixed
The removed item.
Example:
rb = Ringbuffer(1,2,3,4) -- content: 1,2,3,4
val = rb:remove()        -- content: 2,3,4
print(val)               -- prints `1'

function ringbuffer:removeAt(pos)^ top

Remove the item at a position relative to the current element.

Parameters:
number pos
Position of the item to remove.
Returns:
mixed
The removed item.
Example:
rb = Ringbuffer(1,2,3,4,5) -- content: 1,2,3,4,5
rb:removeAt(2)             -- content: 1,2,4,5
rb:removeAt(-1)            -- content: 1,2,4

function ringbuffer:next()^ top

Select and return the next element.

Parameters:
None
Returns:
mixed
The next item.
Example:
rb = Ringbuffer(1,2,3)
rb:next()     -- content: 2,3,1
rb:next()     -- content: 3,1,2
x = rb:next() -- content: 1,2,3
print(x)      -- prints `1'

function ringbuffer:prev()^ top

Select and return the previous item.

Parameters:
None
Returns:
mixed
The previous item.
Example:
rb = Ringbuffer(1,2,3)
rb:prev())    -- content: 3,1,2
rb:prev())    -- content: 2,3,1
x = rb:prev() -- content: 1,2,3
print(x)      -- prints `1'

function ringbuffer:get()^ top

Return the current element.

Parameters:
None
Returns:
mixed
The currently selected element.
Example:
rb = Ringbuffer(1,2,3)
rb:next()       -- content: 2,3,1
print(rb:get()) -- prints '2'

function ringbuffer:size()^ top

Get number of items in the buffer

Parameters:
None
Returns:
number
Number of items in the buffer.
Example:
rb = Ringbuffer(1,2,3)
print(rb:size()) -- prints '3'
rb:remove()
print(rb:size()) -- prints '2'

License^ top

Yay, free software:

Copyright (c) 2010 Matthias Richter

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Download^ top

You can view and download the individual modules on github: vrld/hump. You may also download the whole packed sourcecode either in zip or tar formats.

You can clone the project with Git by running:

git clone git://github.com/vrld/hump
Once done, you can check for updates by running
git pull