Helper Utilities for a Multitude of Problems is a set of lightweight helpers for the awesome LÖVE Engine.
hump differs from other libraries in that every component is independent of the remaining ones. hump's footprint is very small and thus should fit nicely into your projects.
Gamestate = require "hump.gamestate"
A gamestate encapsulates independent data an behaviour into a single entity.
A typical game could consist of a menu-state, a level-state and a game-over-state.
local menu = Gamestate.new()
local game = Gamestate.new()
function menu:draw()
love.graphics.print("Press Enter to continue", 10, 10)
end
function menu:keyreleased(key, code)
if key == 'enter' then
Gamestate.switch(game)
end
end
function game:enter()
Entities.clear()
-- setup entities here
end
function game:update(dt)
Entities.update(dt)
end
function game:draw()
Entities.draw()
end
function love.load()
Gamestate.registerEvents()
Gamestate.switch(menu)
end
A gamestate can define all callbacks that LÖVE defines. In addition, there are callbacks for initalizing, entering and leaving a state:
init()
switch()
.enter(previous, ...)
switch()
.leave()
switch()
.update()
draw()
focus()
keypressed()
keyreleased()
mousepressed()
mousereleased()
joystickpressed()
joystickreleased()
quit()
When using registerEvents()
, all these
callbacks will be called by the corresponding LÖVE callbacks and receive
receive the same arguments (e.g. state:update(dt)
will be called by
love.update(dt)
).
menu = Gamestate.new()
function menu:init() -- run only once
self.background = love.graphics.newImage('bg.jpg')
Buttons.initialize()
end
function menu:enter(previous) -- run every time the state is entered
Buttons.setActive(Buttons.start)
end
function menu:update(dt)
Buttons.update(dt)
end
function menu:draw()
love.graphics.draw(self.background, 0, 0)
Buttons.draw()
end
function menu:keyreleased(key)
if key == 'up' then
Buttons.selectPrevious()
elseif key == 'down' then
Buttons.selectNext()
elseif
Buttons.active:onClick()
end
end
function menu:mousereleased(x,y, mouse_btn)
local button = Buttons.hovered(x,y)
if button then
Button.select(button)
if mouse_btn == 'l' then
button:onClick()
end
end
end
Declare a new gamestate. A gamestate can define several callbacks.
menu = Gamestate.new()
Switch to a gamestate, with any additional arguments passed to the new state.
Switching a gamestate will call the leave()
callback on the current
gamestate, replace the current gamestate with to
, call the init()
function
if the state was not yet inialized and finally call enter(old_state, ...)
on
the new gamestate.
to
...
to:enter(current, ...)
.to:enter(current, ...)
Gamestate.switch(game, level_two)
Calls a function on the current gamestate. Can be any function, but is intended to
be one of the callbacks. Mostly useful when not using
registerEvents()
.
...
function love.draw()
Gamestate.draw() -- <callback> is `draw'
end
function love.update(dt)
Gamestate.update(dt) -- pass dt to currentState:update(dt)
end
function love.keypressed(key, code)
Gamestate.keypressed(key, code) -- pass multiple arguments
end
Overwrite love callbacks to call Gamestate.update()
, Gamestate.draw()
, etc.
automatically. love callbacks (e.g. love.update()
) are still invoked.
This is by done by overwriting the love callbacks, e.g.:
local old_update = love.update
function love.update(dt)
old_update(dt)
return Gamestate.current:update(dt)
end
Note: Only works when called in love.load() or any other function that is executed after the whole file is loaded.
callbacks
(optional)function love.load()
Gamestate.registerEvents()
Gamestate.switch(menu)
end
-- love callback will still be invoked
function love.update(dt)
Timer.update(dt)
-- no need for Gamestate.update(dt)
end
function love.load()
-- only register draw, update and quit
Gamestate.registerEvents{'draw', 'update', 'quit'}
Gamestate.switch(menu)
end
Timer = require "hump.timer"
hump.timer offers a simple interface to schedule the execution of functions. It is possible to run functions after and for some amount of time. For example, a timer could be set to move critters every 5 seconds or to make the player invincible for a short amount of time.
function love.keypressed(key)
if key == ' ' then
Timer.add(1, function() print("Hello, world!") end)
end
end
function love.update(dt)
Timer.update(dt)
end
If you don't need multiple independent schedulers, you can use the global/default timer (see examples).
Creates a new timer instance that is independent of the global timer: It will manage it's own list of scheduled functions and does not in any way affect the the global timer. Likewise, the global timer does not affect timer instances.
Note: Timer instances use the colon-notation (e.g. instance:update(dt)
),
while the global timer uses the dot-notation (e.g. Timer.update(dt)
).
menuTimer = Timer.new()
Schedule a function. The function will be executed after delay
seconds have
elapsed, given that update(dt)
is called every frame.
Note: There is no guarantee that the delay will not be exceeded, it is only guaranteed that the function will not be executed before the delay has passed.
func
will receive itself as only parameter. This is useful to implement
periodic behavior (see the example).
delay
func
-- grant the player 5 seconds of immortality
player.isInvincible = true
Timer.add(5, function() player.isInvincible = false end)
-- print "foo" every second. See also addPeriodic()
Timer.add(1, function(func) print("foo") Timer.add(1, func) end)
--Using a timer instance:
menuTimer:add(1, finishAnimation)
Add a function that will be called count
times every delay
seconds.
If count
is omitted, the function will be called until it returns false
or
cancel(handle)
or clear()
is
called.
delay
func
count
(optional)cancel()
.-- toggle light on and off every second
Timer.addPeriodic(1, function() lamp:toggleLight() end)
-- launch 5 fighters in quick succession (using a timer instance)
mothership_timer:addPeriodic(0.3, function() self:launchFighter() end, 5)
-- flicker player's image as long as he is invincible
Timer.addPeriodic(0.1, function()
player:flipImage()
return player.isInvincible
end)
Run func(dt)
for the next delta
seconds. The function is called every time
update(dt)
is called. Optionally run after()
once delta
seconds have
passed.
after()
will receive itself as only parameter.
Note: You should not add new timers in func(dt)
, as this can lead to random
crashes.
delta
func
update(dt)
.after
(optional)-- play an animation for 5 seconds
Timer.do_for(5, function(dt) animation:update(dt) end)
-- shake the camera for one second
local orig_x, orig_y = camera:pos()
Timer.do_for(1, function()
camera:lookAt(orig_x + math.random(-2,2), orig_y + math.random(-2,2))
end, function()
-- reset camera position
camera:lookAt(orig_x, orig_y)
end)
player.isInvincible = true
-- flash player for 3 seconds
local t = 0
player.timer:do_for(3, function(dt)
t = t + dt
player.visible = (t % .2) < .1
end, function()
-- make sure the player is visible after three seconds
player.visible = true
player.isInvincible = false
end)
Prevent a timer from being executed in the future.
handle
function tick()
print('tick... tock...')
end
handle = Timer.addPeriodic(1, tick)
-- later
Timer.cancel(handle) -- NOT: Timer.cancel(tick)
Remove all timed and periodic functions. Functions that have not yet been executed will discarded.
Timer.clear()
menu_timer:clear()
Update timers and execute functions if the deadline is reached. Use this in
love.update(dt)
.
dt
update()
.function love.update(dt)
do_stuff()
Timer.update(dt)
end
-- using hump.gamestate and a timer instance
function menuState:update(dt)
self.timer:update(dt)
end
vector = require "hump.vector"
A handy 2D vector class providing most of the things you do with vectors.
You can access the individual coordinates by using vec.x and vec.y.
function player:update(dt)
local delta = vector(0,0)
if love.keyboard.isDown('left') then
delta.x = -1
elseif love.keyboard.isDown('right') then
delta.x = 1
end
if love.keyboard.isDown('up') then
delta.y = -1
elseif love.keyboard.isDown('down') then
delta.y = 1
end
delta:normalize_inplace()
player.velocity = player.velocity + delta * player.acceleration * dt
if player.velocity:len() > player.max_velocity then
player.velocity = player.velocity:normalized() * player.max_velocity
end
player.position = player.position + player.velocity * dt
end
Vector arithmetic is implemented by using __add
, __mul
and other
metamethods:
vector + vector = vector
vector - vector = vector
vector * vector = number
number * vector = vector
vector * number = vector
vector / number = vector
Relational operators are defined, too:
a == b
a.x == b.x and a.y == b.y
.a <= b
a.x <= b.x and a.y <= b.y
.a < b
a.x < b.x or (a.x == b.x and a.y < b.y)
.-- acceleration, player.velocity and player.position are vectors
acceleration = vector(0,-9)
player.velocity = player.velocity + acceleration * dt
player.position = player.position + player.velocity * dt
Create a new vector.
x,y
a = vector.new(10,10)
-- as a shortcut, you can call the module like a function: vector = require "hump.vector" a = vector(10,10)
Test whether a variable is a vector.
v
true
if v
is a vector, false
otherwiseif not vector.isvector(v) then
v = vector(v,0)
end
Copy a vector. Simply assigning a vector a vector to a variable will create a reference, so when modifying the vector referenced by the new variable would also change the old one:
a = vector(1,1) -- create vector
b = a -- b references a
c = a:clone() -- c is a copy of a
b.x = 0 -- changes a,b and c
print(a,b,c) -- prints '(1,0), (1,0), (1,1)'
copy = original:clone()
Extract coordinates.
x,y = pos:unpack()
love.graphics.draw(self.image, self.pos:unpack())
Multiplies vectors coordinate wise, i.e. result = vector(a.x * b.x, a.y *
b.y)
.
This does not change either argument vectors, but creates a new one.
other
scaled = original:permul(vector(1,1.5))
Get length of a vector, i.e. math.sqrt(vec.x * vec.x + vec.y * vec.y)
.
distance = (a - b):len()
Get squared length of a vector, i.e. vec.x * vec.x + vec.y * vec.y
.
-- get closest vertex to a given vector
closest, dsq = vertices[1], (pos - vertices[1]):len2()
for i = 2,#vertices do
local temp = (pos - vertices[i]):len2()
if temp < dsq then
closest, dsq = vertices[i], temp
end
end
Get distance of two vectors. The same as (a - b):len()
.
other
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], pos:dist(vertices[1])
for i = 2,#vertices do
local temp = pos:dist(vertices[i])
if temp < dist then
closest, dist = vertices[i], temp
end
end
Get normalized vector, i.e. a vector with the same direction as the input vector, but with length 1.
This does not change the input vector, but creates a new vector.
direction = velocity:normalized()
Normalize a vector, i.e. make the vector unit length. Great to use on intermediate results.
This modifies the vector. If in doubt, use
vector:normalized()
.
normal = (b - a):perpendicular():normalize_inplace()
Get a rotated vector.
This does not change the input vector, but creates a new vector.
angle
-- approximate a circle
circle = {}
for i = 1,30 do
local phi = 2 * math.pi * i / 30
circle[#circle+1] = vector(0,1):rotated(phi)
end
Rotate a vector in-place. Great to use on intermediate results.
This modifies the vector. If in doubt, use
vector:rotate()
.
angle
-- ongoing rotation
spawner.direction:rotate_inplace(dt)
Quick rotation by 90°. Creates a new vector. The same (but faster) as
vec:rotate(math.pi/2)
.
normal = (b - a):perpendicular():normalize_inplace()
Project vector onto another vector (see sketch).
v
velocity_component = velocity:projectOn(axis)
Mirrors vector on the axis defined by the other vector.
v
deflected_velocity = ball.velocity:mirrorOn(surface_normal)
Get cross product of both vectors. Equals the area of the parallelogram spanned by both vectors.
other
parallelogram_area = a:cross(b)
vector = require "hump.vector-light"
An table-free version of hump.vector
. Instead of a vector
type, hump.vector-light
provides functions that operate on numbers.
Note: Using this module instead of hump.vector
might
result in faster code, but does so at the expense of readability. Unless you
are sure that it causes a significant performance penalty, I recommend using
hump.vector
.
function player:update(dt)
local dx,dy = 0,0
if love.keyboard.isDown('left') then
dx = -1
elseif love.keyboard.isDown('right') then
dx = 1
end
if love.keyboard.isDown('up') then
dy = -1
elseif love.keyboard.isDown('down') then
dy = 1
end
dx,dy = vector.normalize(dx, dy)
player.velx, player.vely = vector.add(player.velx, player.vely,
vector.mul(dy, dx, dy))
if vector.len(player.velx, player.vely) > player.max_velocity then
player.velx, player.vely = vector.mul(player.max_velocity,
vector.normalize(player.velx, player.vely)
end
player.x = player.x + dt * player.velx
player.y = player.y + dt * player.vely
end
Transforms a vector to a string of the form (x,y)
.
x,y
print(vector.str(love.mouse.getPosition()))
Computes x*s,y*s
. The order of arguments is chosen so that it's possible to
chain multiple operations (see example).
s
x,y
x*s, y*s
velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy))
Computes x/s,y/s
. The order of arguments is chosen so that it's possible to
chain multiple operations.
s
x,y
x/s, y/s
x,y = vec.div(self.zoom, x-w/2, y-h/2)
Computes the sum (x1+x2,y1+y2
) of two vectors. Meant to be used in
conjunction with other functions.
x1,y1
x2,y2
x1+x2, x1+x2
player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy))
Computes the difference (x1-x2,y1-y2
) of two vectors. Meant to be used in
conjunction with other functions.
x1,y1
x2,y2
x1-x2, x1-x2
dx,dy = vector.sub(400,300, love.mouse.getPosition())
Multiplies vectors coordinates, i.e.: x1*x2, y1*y2
.
x1,y1
x2,y2
x1*x2, y1*y2
x,y = vector.permul(x,y, 1,1.5)
Computes the dot product of two
vectors: x1*x2 + y1*y2
.
x1,y1
x2,y2
x1*x2 + y1*y2
cosphi = vector.dot(rx,ry, vx,vy)
Computes the cross product of two
vectors, x1*y2 - y1*x2
.
x1,y1
x2,y2
x1,y1
x2,y2
x1*y2 - y1*x2
x1*y2 - y1*x2
parallelogram_area = vector.cross(ax,ay, bx,by)
Alias to [vector.cross(x1,y1, x2,y2)
].
parallelogram_area = vector.det(ax,ay, bx,by)
Test for equality.
x1,y1
x2,y2
x1 == x2 and y1 == y2
if vector.eq(x1,y1, x2,y2) then be.happy() end
Test for partial lexical order, <=
.
x1,y1
x2,y2
x1 <= x2 and y1 <= y2
if vector.le(x1,y1, x2,y2) then be.happy() end
Test for strict lexical order, <
.
x1,y1
x2,y2
x1 < x2 or (x1 == x2) and y1 <= y2
if vector.lt(x1,y1, x2,y2) then be.happy() end
Get length of a vector, i.e. math.sqrt(x*x + y*y)
.
x,y
distance = vector.len(love.mouse.getPosition())
Get squared length of a vector, i.e. x*x + y*y
.
x,y
-- get closest vertex to a given vector
closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y)
for i = 2,#vertices do
local temp = vector.len2(px-vertices[i].x, py-vertices[i].y)
if temp < dsq then
closest, dsq = vertices[i], temp
end
end
Get distance of two points. The same as vector.len(x1-x2, y1-y2)
.
x1,y1
x2,y2
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y)
for i = 2,#vertices do
local temp = vector.dist(px,py, vertices[i].x,vertices[i].y)
if temp < dist then
closest, dist = vertices[i], temp
end
end
Get normalized vector, i.e. a vector with the same direction as the input
vector, but with length 1.
x,y
dx,dy = vector.normalize(vx,vy)
Get a rotated vector.
phi
x,y
-- approximate a circle
circle = {}
for i = 1,30 do
local phi = 2 * math.pi * i / 30
circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1)
end
Quick rotation by 90°. The same (but faster) as vector.rotate(math.pi/2, x,y)
.
x,y
nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay))
Project vector onto another vector.
x,y
u,v
vx_p,vy_p = vector.project(vx,vy, ax,ay)
Mirrors vector on the axis defined by the other vector.
x,y
u,v
vx,vy = vector.mirror(vx,vy, surface.x,surface.y)
Class = require "hump.class"
A small, fast class implementation with multiple inheritance support.
Implements class commons.
Critter = Class{function(self, pos, img)
self.pos = pos
self.img = img
end}
Critter.speed = 5
function Critter:update(dt, player)
-- see hump.vector
local dir = (player.pos - self.pos):normalize_inplace()
self.pos = self.pos + dir * Critter.speed * dt
end
function Critter:draw()
love.graphics.draw(self.img, self.pos.x, self.pos.y)
end
Declare a new class.
The constructor will receive the newly create object as first argument.
You can check if an object is an instance of a class using
object:is_a()
.
The name of the variable that holds the module can be used as a shortcut to
new()
(see example).
constructor
(optional)the_name
(optional)or table of classes super
(optional)Class = require 'hump.class' -- `Class' is now a shortcut to new()
-- define unnamed class
Feline = Class{function(self, size, weight)
self.size = size
self.weight = weight
end}
print(Feline) -- prints '
-- define class method
function Feline:stats()
return string.format("size: %.02f, weight %.02f", self.size, self.weight)
end
-- create two objects
garfield = Feline(.7, 45)
felix = Feline(.8, 12)
print("Garfield: " .. garfield:stats(), "Felix: " .. felix:stats())
Class = require 'hump.class'
-- define class with explicit name 'Feline'
Feline = Class{name = "Feline", function(self, size, weight)
self.size = size
self.weight = weight
end}
garfield = Feline(.7, 45)
print(Feline, garfield) -- prints ' >'
Class = require 'hump.class'
A = Class{}
function A:foo()
print('foo')
end
B = Class{}
function B:bar()
print('bar')
end
-- single inheritance
C = Class{inherits = A}
instance = C()
instance:foo() -- prints 'foo'
-- multiple inheritance
D = Class{inherits = {A,B}}
instance = D()
instance:foo() -- prints 'foo'
instance:bar() -- prints 'bar'
Calls class constructor of a class on an object.
Derived classes use this function their constructors to initialize the parent class(es) portions of the object.
object
self
....
Class = require 'hump.class'
Shape = Class{function(self, area)
self.area = area
end}
function Shape:__tostring()
return "area = " .. self.area
end
Rectangle = Class{inherits = Shape, function(self, width, height)
Shape.construct(self, width * height)
self.width = width
self.height = height
end}
function Rectangle:__tostring()
local strs = {
"width = " .. self.width,
"height = " .. self.height,
Shape.__tostring(self)
},
return table.concat(strs, ", ")
end
print( Rectangle(2,4) ) -- prints 'width = 2, height = 4, area = 8'
Menu = Class{function(self)
self.entries = {}
end}
function Menu:add(title, entry)
self.entries[#self.entries + 1] = entry
end
function Menu:display()
-- ...
end
Entry = Class{function(self, title, command)
self.title = title
self.command = command
end}
function Entry:execute()
return self.command()
end
Submenu = Class{inherits = {Menu, Entry}, function(self, title)
Menu.construct(self)
-- redirect self:execute() to self:display()
Entry.construct(self, title, Menu.display)
end}
Inherit functions and variables of another class, if they are not already defined for the class. This is done by simply copying the functions and variables over to the subclass. The Lua rules for copying apply (i.e. tables are referenced, functions and primitive types are copied by value).
Be careful with changing table values in a subclass: This will change the value in the parent class too.
If more than one parent class is specified, inherit from all of these, in order of occurrence. That means that when two parent classes define the same method, the one from the first class will be inherited.
Note: class:inherit()
doesn't actually care if the arguments supplied are
hump classes. Just any table will work.
...
Class = require 'hump.class'
Entity = Class{function(self)
GameObjects.register(self)
end}
Collidable = {
dispatch_collision = function(self, other, dx, dy)
if self.collision_handler[other.type])
return collision_handler[other.type](self, other, dx, dy)
end
return collision_handler["*"](self, other, dx, dy)
end,
collision_handler = {["*"] = function() end},
}
Spaceship = Class{function(self)
self.type = "Spaceship"
-- ...
end}
-- make Spaceship collidable
Spaceship:inherit(Collidable)
function Spaceship:collision_handler["Spaceship"](other, dx, dy)
-- ...
end
Tests whether an object is an instance of a class.
cls
true
if the object is an instance of the class, false
otherwiseClass = require 'hump.class'
A = Class{}
B = Class{inherits=A}
C = Class{inherits=B}
a, b, c = A(), B(), C()
print(a:is_a(A), a:is_a(B), a:is_a(C)) --> true false false
print(b:is_a(A), b:is_a(B), b:is_a(C)) --> true true false
print(c:is_a(A), c:is_a(B), c:is_a(C)) --> true true true
D = Class{}
E = Class{inherits={B,D}}
d, e = D(), E()
print(d:is_a(A), d:is_a(B), d:is_a(D)) --> false false true
print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true true true
Be careful when using metamethods like __add
or __mul
: If subclass inherits
those methods from a superclass, but does not overwrite them, the result of the
operation may be of the type superclass. Consider the following:
Class = require 'hump.class'
A = Class{function(self, x) self.x = x end}
function A:__add(other) return A(self.x + other.x) end
function A:show() print("A:", self.x) end
B = Class{inherits = A, function(self, x, y) A.construct(self, x) self.y = y end}
function B:show() print("B:", self.x, self.y) end
function B:foo() print("foo") end
one, two = B(1,2), B(3,4)
result = one + two
result:show() -- prints "A: 4"
result:foo() -- error: method does not exist
Note that while you can define the __index
metamethod of the class, this is
not a good idea: It will break the class. To add a custom __index
metamethod
without breaking the class system, you have to use rawget()
. But beware that
this won't affect subclasses:
Class = require 'hump.class'
A = Class{}
function A:foo() print('bar') end
function A:__index(key)
print(key)
return rawget(A, key)
end
instance = A()
instance:foo() -- prints foo bar
B = Class{inherits = A}
instance = B()
instance:foo() -- prints only foo
Signals = require 'hump.signal'
A simple yet effective implementation of Signals and Slots, also known as Observer pattern: Functions can be dynamically bound to signals. When a signal is emitted, all registered functions will be invoked. Simple as that.
hump.signal
makes things more interesing by allowing to emit all signals that
match a Lua string pattern.
-- in AI.lua
signals.register('shoot', function(x,y, dx,dy)
-- for every critter in the path of the bullet:
-- try to avoid being hit
for critter in pairs(critters) do
if critter:intersectsRay(x,y, dx,dy) then
critter:setMoveDirection(-dy, dx)
end
end
end)
-- in sounds.lua
signals.register('shoot', function()
Sounds.fire_bullet:play()
end)
-- in main.lua
function love.keypressed(key)
if key == ' ' then
local x,y = player.pos:unpack()
local dx,dy = player.direction:unpack()
signals.emit('shoot', x,y, dx,dy)
end
end
If you don't need multiple independent registries, you can use the global/default registry (see examples).
Creates a new signal registry that is independent of the default registry: It will manage it's own list of signals and does not in any way affect the the global registry. Likewise, the global registry does not affect the instance.
Note: Independent registries use the colon-notation (e.g.
instance:emit("foo")
), while the global registry uses the dot-notation (e.g.
Signal.emit("foo")
).
player.signals = Signals.new()
Registers a function f
to be called when signal s
is emitted.
s
f
remove()
.Signal.register('level-complete', function() self.fanfare:play() end)
handle = Signal.register('level-load', function(level) level.show_help() end)
menu:register('key-left', select_previous_item)
Calls all functions bound to signal s
with the supplied arguments.
s
...
(optional)function love.keypressed(key)
-- using a signal instance
if key == 'left' then menu:emit('key-left') end
end
if level.is_finished() then
-- adding arguments
Signal.emit('level-load', level.next_level)
end
Unbinds (removes) functions from signal s
.
s
...
Signal.remove('level-load', handle)
Removes all functions from signal s
.
s
Signal.clear('key-left')
Emits all signals matching a string pattern.
p
...
(optional)Signal.emit_pattern('^update%-.*', dt)
Removes functions from all signals matching a string pattern.
p
...
Signal.remove_pattern('key%-.*', play_click_sound)
Removes all functions from all signals matching a string pattern.
p
Signal.clear_pattern('sound%-.*')
player.signals:clear_pattern('.*') -- clear all signals
Camera = require "hump.camera"
A camera utility for LÖVE. A camera can "look" at a position. It can zoom in and out and it can rotate it's view. In the background, this is done by actually moving, scaling and rotating everything in the game world. But don't worry about that.
function love.load()
cam = Camera(player.pos.x, player.pos.y)
end
function love.update(dt)
local dx,dy = player.x - cam.x, player.y - cam.y
cam:move(dx/2, dy/2)
end
Creates a new camera. You can access the camera position using camera.x,
camera.y
, the zoom using camera.scale
and the rotation using camera.rot
.
The module variable name can be used at a shortcut to new()
.
x,y
(optional)zoom
(optional)rot
(optional)camera = require 'hump.camera'
-- camera looking at (100,100) with zoom 2 and rotated by 45 degrees
cam = camera(100,100, 2, math.pi/2)
Move the camera by some vector. To set the position, use
camera:lookAt(x,y)
.
This function is shortcut to camera.x,camera.y = camera.x+dx, camera.y+dy.
dx,dy
function love.update(dt)
camera:move(dt * 5, dt * 6)
end
function love.update(dt)
camera:move(dt * 5, dt * 6):rotate(dt)
end
Let the camera look at a point. In other words, it sets the camera position. To
move the camera by some amount, use camera:move(x,y)
.
This function is shortcut to camera.x,camera.y = x, y
.
x,y
function love.update(dt)
camera:lookAt(player.pos:unpack())
end
function love.update(dt)
camera:lookAt(player.pos:unpack()):rotation(player.rot)
end
Returns camera.x, camera.y
.
-- let the camera fly!
local cam_dx, cam_dy = 0, 0
function love.mousereleased(x,y)
local cx,cy = camera:position()
dx, dy = x-cx, y-cy
end
function love.update(dt)
camera:move(dx * dt, dy * dt)
end
Rotate the camera by some angle. To set the angle use camera.rot = new_angle
.
This function is shortcut to camera.rot = camera.rot + angle
.
angle
function love.update(dt)
camera:rotate(dt)
end
function love.update(dt)
camera:rotate(dt):move(dt,dt)
end
Set rotation: camera.rot = angle
.
angle
camera:rotateTo(math.pi/2)
Multiply zoom: camera.scale = camera.scale * mul
.
mul
camera:zoom(2) -- make everything twice as big
camera:zoom(0.5) -- ... and back to normal
camera:zoom(-1) -- flip everything
Set zoom: camera.scale = zoom
.
zoom
camera:zoomTo(1)
Start looking through the camera.
Apply camera transformations, i.e. move, scale and rotate everything until
camera:detach()
as if looking through the camera.
function love.draw()
camera:attach()
draw_world()
cam:detach()
draw_hud()
end
Stop looking through the camera.
function love.draw()
camera:attach()
draw_world()
cam:detach()
draw_hud()
end
Wrap a function between a camera:attach()/camera:detach()
pair:
cam:attach()
func()
cam:detach()
func
function love.draw()
camera:draw(draw_world)
draw_hud()
end
Because a camera has a point it looks at, a rotation and a zoom factor, it defines a coordinate system. A point now has two sets of coordinates: One defines where the point is to be found in the game world, and the other describes the position on the computer screen. The first set of coordinates is called world coordinates, the second one camera coordinates. Sometimes it is needed to convert between the two coordinate systems, for example to get the position of a mouse click in the game world in a strategy game, or to see if an object is visible on the screen.
camera:worldCoords(x,y)
and camera:cameraCoords(x,y)
transform a point
between these two coordinate systems.
x, y
x,y = camera:worldCoords(love.mouse.getPosition())
selectedUnit:plotPath(x,y)
Because a camera has a point it looks at, a rotation and a zoom factor, it defines a coordinate system. A point now has two sets of coordinates: One defines where the point is to be found in the game world, and the other describes the position on the computer screen. The first set of coordinates is called world coordinates, the second one camera coordinates. Sometimes it is needed to convert between the two coordinate systems, for example to get the position of a mouse click in the game world in a strategy game, or to see if an object is visible on the screen.
camera:worldCoords(x,y)
and camera:cameraCoords(x,y)
transform a point
between these two coordinate systems.
x, y
x,y = cam:cameraCoords(player.pos)
love.graphics.line(x, y, love.mouse.getPosition())
Shortcut to camera:worldCoords(love.mouse.getPosition())
.
x,y = camera:mousepos()
selectedUnit:plotPath(x,y)
Ringbuffer = require "hump.ringbuffer"
A ring-buffer is a circular array: It does not have a first nor a last item, but it has a selected or current element.
A ring-buffer can be used to implement Tomb Raider style inventories, looping play-lists, recurring dialogs (like a unit's answers when selecting it multiple times in Warcraft) and generally everything that has a circular or looping structure.
Create new ring-buffer.
The module name is a shortcut to this function.
...
ringbuffer = require 'hump.ringbuffer'
rb = ringbuffer.new(1,2,3)
-- or:
rb = ringbuffer(1,2,3)
Insert items behind current element.
...
rb = Ringbuffer(1,5,6) -- content: 1,5,6
rb:insert(2,3,4) -- content: 1,2,3,4,5,6
Remove current item, return it and select next element.
rb = Ringbuffer(1,2,3,4) -- content: 1,2,3,4
val = rb:remove() -- content: 2,3,4
print(val) -- prints `1'
Remove the item at a position relative to the current element.
pos
rb = Ringbuffer(1,2,3,4,5) -- content: 1,2,3,4,5
rb:removeAt(2) -- content: 1,2,4,5
rb:removeAt(-1) -- content: 1,2,4
Select and return the next element.
rb = Ringbuffer(1,2,3)
rb:next() -- content: 2,3,1
rb:next() -- content: 3,1,2
x = rb:next() -- content: 1,2,3
print(x) -- prints `1'
Select and return the previous item.
rb = Ringbuffer(1,2,3)
rb:prev()) -- content: 3,1,2
rb:prev()) -- content: 2,3,1
x = rb:prev() -- content: 1,2,3
print(x) -- prints `1'
Return the current element.
rb = Ringbuffer(1,2,3)
rb:next() -- content: 2,3,1
print(rb:get()) -- prints '2'
Get number of items in the buffer
rb = Ringbuffer(1,2,3)
print(rb:size()) -- prints '3'
rb:remove()
print(rb:size()) -- prints '2'
Yay, free software
Copyright (c) 2010-2012 Matthias Richter
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.