hump/docs/vector.rst
2018-05-27 11:52:33 +02:00

493 lines
12 KiB
ReStructuredText

hump.vector
===========
::
vector = require "hump.vector"
A handy 2D vector class providing most of the things you do with vectors.
You can access the individual coordinates by ``vec.x`` and ``vec.y``.
.. note::
The vectors are stored as tables. Most operations create new vectors and
thus new tables, which *may* put the garbage collector under stress.
If you experience slowdowns that are caused by hump.vector, try the
table-less version :doc:`hump.vector-light <vector-light>`.
**Example**::
function player:update(dt)
local delta = vector(0,0)
if love.keyboard.isDown('left') then
delta.x = -1
elseif love.keyboard.isDown('right') then
delta.x = 1
end
if love.keyboard.isDown('up') then
delta.y = -1
elseif love.keyboard.isDown('down') then
delta.y = 1
end
delta:normalizeInplace()
player.velocity = player.velocity + delta * player.acceleration * dt
if player.velocity:len() > player.max_velocity then
player.velocity = player.velocity:normalized() * player.max_velocity
end
player.position = player.position + player.velocity * dt
end
List of Functions
-----------------
* :func:`vector.new(x,y) <vector.new>`
* :func:`vector.fromPolar(angle, radius) <vector.fromPolar>`
* :func:`vector.randomDirection(len_min, len_max) <vector.randomDirection>`
* :func:`vector.isvector(v) <vector.isvector>`
* :func:`vector:clone() <vector:clone>`
* :func:`vector:unpack() <vector:unpack>`
* :func:`vector:permul(other) <vector:permul>`
* :func:`vector:len() <vector:len>`
* :func:`vector:toPolar() <vector:toPolar>`
* :func:`vector:len2() <vector:len2>`
* :func:`vector:dist(other) <vector:dist>`
* :func:`vector:dist2(other) <vector:dist2>`
* :func:`vector:normalized() <vector:normalized>`
* :func:`vector:normalizeInplace() <vector:normalizeInplace>`
* :func:`vector:rotated(angle) <vector:rotated>`
* :func:`vector:rotateInplace(angle) <vector:rotateInplace>`
* :func:`vector:perpendicular() <vector:perpendicular>`
* :func:`vector:projectOn(v) <vector:projectOn>`
* :func:`vector:mirrorOn(v) <vector:mirrorOn>`
* :func:`vector:cross(other) <vector:cross>`
* :func:`vector:angleTo(other) <vector:angleTo>`
* :func:`vector:trimmed(max_length) <vector:trimmed>`
* :func:`vector:trimInplace(max_length) <vector:trimInplace>`
Vector arithmetic
-----------------
**hump** provides vector arithmetic by implement the corresponding metamethods
(``__add``, ``__mul``, etc.). Here are the semantics:
``vector + vector = vector``
Component wise sum: \\((a,b) + (x,y) = (a+x, b+y)\\)
``vector - vector = vector``
Component wise difference: \\((a,b) - (x,y) = (a-x, b-y)\\)
``vector * vector = number``
Dot product: \\((a,b) \\cdot (x,y) = a\\cdot x + b\\cdot y\\)
``number * vector = vector``
Scalar multiplication/scaling: \\((a,b) \\cdot s = (s\\cdot a, s\\cdot b)\\)
``vector * number = vector``
Scalar multiplication/scaling: \\(s \\cdot (x,y) = (s\\cdot x, s\\cdot y)\\)
``vector / number = vector``
Scalar division: \\((a,b) / s = (a/s, b/s)\\).
``vector // number = vector``
Scalar integer division (only Lua 5.3 and up): \\((a,b) // s = (a//s, b//s)\\).
Common relations are also defined:
``a == b``
Same as ``a.x == b.x and a.y == b.y``.
``a <= b``
Same as ``a.x <= b.x and a.y <= b.y``.
``a < b``
Lexicographical order: ``a.x < b.x or (a.x == b.x and a.y < b.y)``.
**Example**::
-- acceleration, player.velocity and player.position are vectors
acceleration = vector(0,-9)
player.velocity = player.velocity + acceleration * dt
player.position = player.position + player.velocity * dt
Function Reference
------------------
.. function:: vector.new(x,y)
:param numbers x,y: Coordinates.
:returns: The vector.
Create a new vector.
**Examples**::
a = vector.new(10,10)
::
-- as a shortcut, you can call the module like a function:
vector = require "hump.vector"
a = vector(10,10)
.. function:: vector.fromPolar(angle, radius)
:param number angle: Angle of the vector in radians.
:param number radius: Length of the vector (optional, default = 1).
:returns: The vector in cartesian coordinates.
Create a new vector from polar coordinates.
The ``angle`` is measured against the vector (1,0), i.e., the x axis.
**Examples**::
a = vector.polar(math.pi,10)
.. function:: vector.randomDirection(len_min, len_max)
:param number len_min: Minimum length of the vector (optional, default = 1).
:param number len_max: Maximum length of the vector (optional, default = ``len_min``).
:returns: A vector pointing in a random direction with a random length between ``len_min`` and ``len_max``.
**Examples**::
rnd = vector.randomDirection() -- length is 1
rnd = vector.randomDirection(100) -- length is 100
rnd = vector.randomDirection(1,5) -- length is a random value between 1 and 5
Sample a vector with random direction and (optional) length.
.. function:: vector.isvector(v)
:param mixed v: The variable to test.
:returns: ``true`` if ``v`` is a vector, ``false`` otherwise.
Test whether a variable is a vector.
**Example**::
if not vector.isvector(v) then
v = vector(v,0)
end
.. function:: vector:clone()
:returns: Copy of the vector.
Copy a vector. Assigning a vector to a variable will create a *reference*, so
when modifying the vector referenced by the new variable would also change the
old one::
a = vector(1,1) -- create vector
b = a -- b references a
c = a:clone() -- c is a copy of a
b.x = 0 -- changes a,b and c
print(a,b,c) -- prints '(1,0), (1,0), (1,1)'
**Example**::
copy = original:clone()
.. function:: vector:unpack()
:returns: The coordinates ``x,y``.
Extract coordinates.
**Examples**::
x,y = pos:unpack()
::
love.graphics.draw(self.image, self.pos:unpack())
.. function:: vector:permul(other)
:param vector other: The second source vector.
:returns: Vector whose components are products of the source vectors.
Multiplies vectors coordinate wise, i.e. ``result = vector(a.x * b.x, a.y *
b.y)``.
Does not change either argument vectors, but creates a new one.
**Example**::
-- scale with different magnitudes
scaled = original:permul(vector(1,1.5))
.. function:: vector:len()
:returns: Length of the vector.
Get length of the vector, i.e. ``math.sqrt(vec.x * vec.x + vec.y * vec.y)``.
**Example**::
distance = (a - b):len()
.. function:: vector:toPolar()
:returns: The vector in polar coordinates (angle, radius).
Convert the vector to polar coordinates, i.e., the angle and the radius/lenth.
**Example**::
-- complex multiplication
p, q = a:toPolar(), b:toPolar()
c = vector(p.x+q.x, p.y*q.y)
.. function:: vector:len2()
:returns: Squared length of the vector.
Get squared length of the vector, i.e. ``vec.x * vec.x + vec.y * vec.y``.
**Example**::
-- get closest vertex to a given vector
closest, dsq = vertices[1], (pos - vertices[1]):len2()
for i = 2,#vertices do
local temp = (pos - vertices[i]):len2()
if temp < dsq then
closest, dsq = vertices[i], temp
end
end
.. function:: vector:dist(other)
:param vector other: Other vector to measure the distance to.
:returns: The distance of the vectors.
Get distance of two vectors. The same as ``(a - b):len()``.
**Example**::
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], pos:dist(vertices[1])
for i = 2,#vertices do
local temp = pos:dist(vertices[i])
if temp < dist then
closest, dist = vertices[i], temp
end
end
.. function:: vector:dist2(other)
:param vector other: Other vector to measure the distance to.
:returns: The squared distance of the vectors.
Get squared distance of two vectors. The same as ``(a - b):len2()``.
**Example**::
-- get closest vertex to a given vector
-- slightly faster than the example using len2()
closest, dsq = vertices[1], pos:dist2(vertices[1])
for i = 2,#vertices do
local temp = pos:dist2(vertices[i])
if temp < dsq then
closest, dsq = vertices[i], temp
end
end
.. function:: vector:normalized()
:returns: Vector with same direction as the input vector, but length 1.
Get normalized vector: a vector with the same direction as the input vector,
but with length 1.
Does not change the input vector, but creates a new vector.
**Example**::
direction = velocity:normalized()
.. function:: vector:normalizeInplace()
:returns: Itself -- the normalized vector
Normalize a vector, i.e. make the vector to have length 1. Great to use on
intermediate results.
.. warning::
This modifies the vector. If in doubt, use :func:`vector:normalized()`.
**Example**::
normal = (b - a):perpendicular():normalizeInplace()
.. function:: vector:rotated(angle)
:param number angle: Rotation angle in radians.
:returns: The rotated vector
Get a vector with same length, but rotated by ``angle``:
.. image:: _static/vector-rotated.png
:alt: Sketch of rotated vector.
Does not change the input vector, but creates a new vector.
**Example**::
-- approximate a circle
circle = {}
for i = 1,30 do
local phi = 2 * math.pi * i / 30
circle[#circle+1] = vector(0,1):rotated(phi)
end
.. function:: vector:rotateInplace(angle)
:param number angle: Rotation angle in radians.
:returns: Itself -- the rotated vector
Rotate a vector in-place. Great to use on intermediate results.
.. warning::
This modifies the vector. If in doubt, use :func:`vector:rotated()`.
**Example**::
-- ongoing rotation
spawner.direction:rotateInplace(dt)
.. function:: vector:perpendicular()
:returns: A vector perpendicular to the input vector
Quick rotation by 90°. Creates a new vector. The same (but faster) as
``vec:rotate(math.pi/2)``:
.. image:: _static/vector-perpendicular.png
:alt: Sketch of two perpendicular vectors
**Example**::
normal = (b - a):perpendicular():normalizeInplace()
.. function:: vector:projectOn(v)
:param vector v: The vector to project on.
:returns: ``vector`` The projected vector.
Project vector onto another vector:
.. image:: _static/vector-projectOn.png
:alt: Sketch of vector projection.
**Example**::
velocity_component = velocity:projectOn(axis)
.. function:: vector:mirrorOn(v)
:param vector v: The vector to mirror on.
:returns: The mirrored vector.
Mirrors vector on the axis defined by the other vector:
.. image: _static/vector-mirrorOn.png
:alt: Sketch of a vector mirrored on another vector
**Example**::
deflected_velocity = ball.velocity:mirrorOn(surface_normal)
.. function:: vector:cross(other)
:param vector other: Vector to compute the cross product with.
:returns: ``number`` Cross product of both vectors.
Get cross product of two vectors. Equals the area of the parallelogram spanned
by both vectors.
**Example**::
parallelogram_area = a:cross(b)
.. function:: vector:angleTo(other)
:param vector other: Vector to measure the angle to (optional).
:returns: Angle in radians.
Measures the angle between two vectors. If ``other`` is omitted it defaults
to the vector ``(0,0)``, i.e. the function returns the angle to the coordinate
system.
**Example**::
lean = self.upvector:angleTo(vector(0,1))
if lean > .1 then self:fallOver() end
.. function:: vector:trimmed(max_length)
:param number max_length: Maximum allowed length of the vector.
:returns: A trimmed vector.
Trim the vector to ``max_length``, i.e. return a vector that points in the same
direction as the source vector, but has a magnitude smaller or equal to
``max_length``.
Does not change the input vector, but creates a new vector.
**Example**::
ship.velocity = ship.force * ship.mass * dt
ship.velocity = ship.velocity:trimmed(299792458)
.. function:: vector:trimInplace(max_length)
:param number max_length: Maximum allowed length of the vector.
:returns: Itself -- the trimmed vector.
Trim the vector to ``max_length``, i.e. return a vector that points in the same
direction as the source vector, but has a magnitude smaller or equal to
``max_length``.
.. warning::
This modifies the vector. If in doubt, use :func:`vector:trimmed()`.
**Example**::
ship.velocity = (ship.velocity + ship.force * ship.mass * dt):trimInplace(299792458)