hump/doc.lua
2012-06-12 13:03:45 +02:00

1712 lines
48 KiB
Lua

Module { name = "hump.gamestate",
title = "Gamestate",
short = "A gamestate system",
long = [===[
A gamestate encapsulates independent data an behaviour into a single entity.
A typical game could consist of a {*menu-state}, a {*level-state} and a {*game-over-state}.]===],
Section { name = "callbacks",
title = "Gamestate Callbacks",
content = [===[
A gamestate can define (nearly) all callbacks that LÖVE defines. In addition,
there are callbacks for entering and leaving a state.:
[|
{#init()} :Called once before entering the state. See {#switch()}.
{#enter(previous, ...)} :Called when entering the state. See {#switch()}.
{#leave()} :Called when leaving a state. See {#switch()}.
{#update()} :Update the game state. Called every frame.
{#draw()} :Draw on the screen. Called every frame.
{#focus()} :Called if the window gets or looses focus.
{#keypressed()} :Triggered when a key is pressed.
{#keyreleased()} :Triggered when a key is released.
{#mousepressed()} :Triggered when a mouse button is pressed.
{#mousereleased()} :Triggered when a mouse button is released.
{#joystickpressed()} :Triggered when a joystick button is pressed.
{#joystickreleased()} :Triggered when a joystick button is released.
{#quit()} :Called on quitting the game. Only called on the active gamestate.
]
When using {#registerEvents()}, all these callbacks will receive the same
arguments as the [^http://love2d.org/wiki/love LÖVE callbacks] do.]===],
example = [===[
menu = Gamestate.new()
function menu:init() -- run only once
self.background = love.graphics.newImage('bg.jpg')
Buttons.initialize()
end
function menu:enter(previous) -- run every time the state is entered
Buttons.setActive(Buttons.start)
end
function menu:update(dt)
Buttons.update(dt)
end
function menu:draw()
love.graphics.draw(self.background, 0, 0)
Buttons.draw()
end
function menu:keyreleased(key)
if key == 'up' then
Buttons.selectPrevious()
elseif key == 'down' then
Buttons.selectNext()
elseif
Buttons.active:onClick()
end
end
function menu:mousereleased(x,y, mouse_btn)
local button = Buttons.hovered(x,y)
if button then
Button.select(button)
if mouse_btn == 'l' then
button:onClick()
end
end
end]===]
},
Function { name = "new",
short = "Create a new gamestate.",
long = "Declare a new gamestate. A gamestate can define several [^#{{MODULE}}-callbacks callbacks].",
params = {},
returns = {
{"Gamestate", "The new gamestate."}
},
example = "menu = Gamestate.new()",
},
Function { name = "switch",
short = "Switch to gamestate.",
long = [===[
Switch to a gamestate, with any additional arguments passed to the new state.
Switching a gamestate will call the {#leave()} callback on the current gamestate,
replace the current gamestate with to, call the {#init()} function if the state
was not yet inialized and finally call {#enter(old_state, ...)} on the new gamestate.]===],
params = {
{"Gamestate", "to", "Target gamestate."},
{"mixed", "...", "Additional arguments to pass to to:enter()."}
},
returns = {
{"mixed", "The results of to:enter()"}
},
example = "Gamestate.switch(game, level_two)",
},
Function { name = {
"update",
"draw",
"focus",
"keypressed",
"keyreleased",
"mousepressed",
"mousereleased",
"joystickpressed",
"joystickreleased",
"quit",
},
short = {
"Update current gamestate.",
"Draw the current gamestate.",
"Inform current gamestate of a focus event.",
"Inform current gamestate of a keypressed event.",
"Inform current gamestate of a keyreleased event.",
"Inform current gamestate of a mousepressed event.",
"Inform current gamestate of a mousereleased event.",
"Inform current gamestate of a joystickpressed event.",
"Inform current gamestate of a joystickreleased event.",
"Inform current gamestate of a quit event.",
},
long = [===[
Calls the corresponding function on the current gamestate (see [^#{{MODULE}}-callbacks callbacks]).
Only needed when not using {#registerEvents()}.]===],
params = {
{"mixed", "...", "Arguments to pass to the corresponding [^#{{MODULE}}-callbacks callback]."},
},
returns = {
{"mixed", "The results of the callback function."},
},
example = [===[
function love.update(dt)
Gamestate.update(dt)
end
function love.draw()
local mx,my = love.mouse.getPosition()
Gamestate.draw(mx, my)
end
function love.keypressed(key, code)
Gamestate.keypressed(key, code)
end]===],
},
Function { name = "registerEvents",
short = "Automatically do all of the above when needed.",
long = [===[
Register love callbacks to call {#Gamestate.update()}, {#Gamestate.draw()}, etc. automatically.
This is by done by overwriting the love callbacks, e.g.:
[%local old_update = love.update
function love.update(dt)
old_update(dt)
Gamestate.current:update(dt)
end]
{!Note:} Only works when called in {#love.load()} or any other function that is executed
after the whole file is loaded.]===],
params = {
{'table', 'callbacks', 'Names of the callbacks to register. If omitted, register all callbacks.', optional = true},
},
returns = {},
example = {
[===[function love.load()
Gamestate.registerEvents()
Gamestate.switch(menu)
end]===], [===[function love.load()
Gamestate.registerEvents{'draw', 'update', 'quit'}
Gamestate.switch(menu)
end]===]
}
},
}
Module { name = "hump.timer",
title = "Timer",
short = "Delayed function calls and helpers for interpolating functions.",
long = [===[
hump.timer provides a simple interface to use delayed functions, i.e.
functions that will be executed after some amount time has passed. For
example, you can use a timer to set the player invincible for a short
amount of time.
In addition, the module offers facilities to create functions that
interpolate or oscillate over time. An interpolator could fade the color or
a text message, whereas an oscillator could be used for the movement of
foes in a shmup.]===],
Function { name = "new",
short = "Create new timer instance.",
long = [===[
{!If you don't need multiple independent schedulers, you can use the
global/default timer (see examples).}
Creates a new timer instance that is independent of the global timer:
It will manage it's own list of scheduled functions and does not in any
way affect the the global timer. Likewise, the global timer does not
affect the timer instance.
{!Note:} Timer instances use the colon-notation (e.g.
{#instance:update(dt)}), while the global timer uses the dot-notation
(e.g. {#Timer.update(dt)}).]===],
params = {},
returns = {
{"Timer", "A timer instance"}
},
example = "menuTimer = Timer.new()",
},
Function { name = {"add", "instance:add"},
short = "Schedule a function.",
long = [===[
Schedule a function. The function will be executed after {#delay}
seconds have elapsed, given that {#update(dt)} is called every frame.
Note that there is no guarantee that the delay will not be exceeded, it
is only guaranteed that the function will not be executed {*before} the
delay has passed.
It is an error to schedule a function again if it is not yet finished
or canceled.
{#func} will receive itself as only parameter. This is useful to
implement periodic behavior (see the example).]===],
params = {
{"number", "delay", "Number of seconds the function will be delayed."},
{"function", "func", "The function to be delayed."},
},
returns = {
{"function", "The timer handle."}
},
example = {
[===[
-- grant the player 5 seconds of immortality
player.isInvincible = true
Timer.add(5, function() player.isInvincible = false end)]===],
[===[
-- print "foo" every second. See addPeriodic.
Timer.add(1, function(func) print("foo") Timer.add(1, func) end)]===],
[===[menuTimer:add(1, finishAnimation)]===]
},
},
Function { name = {"addPeriodic", "instance:addPeriodic"},
short = "Add a periodic function.",
long = [===[
Add a function that will be called {#count} times every {#delay}
seconds.
If {#count} is omitted, the function will be called until it returns
{#false} or {#clear()} is called.]===],
params = {
{"number", "delay", "Number of seconds between two consecutive function calls."},
{"function", "func", "The function to be called periodically."},
{"number", "count", "Number of times the function is to be called.", optional = true},
},
returns = {
{"function", "The timer handle."}
},
example = {
"Timer.addPeriodic(1, function() lamp:toggleLight() end)",
"mothership_timer:addPeriodic(0.3, function() self:spawnFighter() end, 5)",
[===[-- flicker player's image as long as he is invincible
Timer.addPeriodic(0.1, function()
player:flipImage()
return player.isInvincible
end)]===],
},
},
Function { name = {"cancel", "instance:cancel"},
short = "Cancel a scheduled function.",
long = [===[
Prevent a timer from being executed in the future.
{*Always} use the function handle returned by {#add()}/{#addPeriodic()}
to cancel a timer.
{*Never} use this inside a scheduled function.]===],
params = {
{"function", "func", "The function to be canceled."},
},
returns = {},
example = {
[===[function tick()
print('tick... tock...')
end
handle = Timer.addPeriodic(1, tick)
-- later
Timer.cancel(handle) -- NOT: Timer.cancel(tick)]===]
},
},
Function { name = {"clear", "instance:clear"},
short = "Remove all timed and periodic functions.",
long = [===[
Remove all timed and periodic functions. Functions that have not yet
been executed will discarded.
{*Never} use this inside a scheduled function.]===],
params = {},
returns = {},
example = "Timer.clear()",
},
Function { name = {"update", "instance:update"},
short = "Update scheduled functions.",
long = "Update timers and execute functions if the deadline is reached. Use this in {#love.update(dt)}.",
params = {
{"number", "dt", "Time that has passed since the last update()."},
},
returns = {},
example = [===[
function love.update(dt)
do_stuff()
Timer.update(dt)
end]===],
},
Function { name = "Interpolator",
short = "Create a new interpolating function.",
long = [===[
Create a wrapper for an interpolating function, i.e. a function that
acts depending on how much time has passed.
The wrapper will have the prototype:
[%function wrapper(dt, ...)]
where {#dt} is the time that has passed since the last call of the
wrapper and {#...} are arguments passed to the interpolating function.
It will return whatever the interpolating functions returns if the
interpolation is not yet finished or nil if the interpolation is done.
The prototype of the interpolating function is:
[%function interpolator(fraction, ...)]
where {#fraction} is a number between 0 and 1 depending on how much
time has passed and {#...} are additional arguments supplied to the
wrapper.]===],
params = {
{"number", "length", "Interpolation length in seconds."},
{"function", "func", "Interpolating function."},
},
returns = {
{"function", "The wrapper function."}
},
example = [===[
fader = Timer.Interpolator(5, function(frac, r,g,b)
love.graphics.setBackgroundColor(frac*r,frac*g,frac*b)
end)
function love.update(dt)
fader(dt, 255,255,255)
end]===],
},
Function { name = "Oscillator",
short = "Create a new oscillating function.",
long = [===[
Create a wrapper for an oscillating function, which is basically a
looping interpolating function.
The function prototypes are the same as with {#Interpolator()}:
[%function wrapper(dt, ...)]
[%function oscillator(fraction, ...)]
As with {#Interpolator}, the wrapper will return whatever
{#oscillator()} returns.]===],
params = {
{"number", "length", "Length of one interpolation period."},
{"function", "func", "Oscillating function."},
},
returns = {
{"function", "The wrapper function."}
},
example = [===[
mover = Timer.Oscillator(10, function(frac)
return 400 + 300 * math.sin(2*math.pi*frac)
end)
local xpos = 100
function love.update(dt)
xpos = mover(dt)
end
function love.draw()
love.graphics.circle('fill', xpos, 300, 80, 36)
end]===],
},
}
Module { name = "hump.vector",
title = "vector",
short = "2D vector math.",
long = [===[
A handy 2D vector class providing most of the things you do with vectors.
You can access the individual coordinates by using {#vec.x} and {#vec.y}.]===],
Section { name = "operators",
title = "Arithmetics and relations",
content = [===[
Vector arithmetic is implemented by using {#__add}, {#__mul} and other metamethods:
[|
{#vector + vector = vector} :Component wise sum.
{#vector - vector = vector} :Component wise difference.
{#vector * vector = number} :Dot product.
{#number * vector = vector} :Scalar multiplication (scaling).
{#vector * number = vector} :Scalar multiplication.
{#vector / number = vector} :Scalar multiplication.
]
Relational operators are defined, too:
[|
a == b :{#true}, if {#a.x == b.x} and {#a.y == b.y}.
a <= b :{#true}, if {#a.x <= b.x} and {#a.y <= b.y}.
a < b :Lexical sort: {#true}, if {#a.x < b.x} or {#a.x == b.x} and {#a.y < b.y}.
]]===],
example = [===[
-- acceleration, player.velocity and player.position are vectors
acceleration = vector(0,-9)
player.velocity = player.velocity + acceleration * dt
player.position = player.position + player.velocity * dt]===],
},
Function { name = "new",
short = "Create a new vector.",
long = "Create a new vector.",
params = {
{"numbers", "x,y", "Coordinates."}
},
returns = {
{"vector", "The vector."}
},
example = {
"a = vector.new(10,10)",
[===[-- as a shortcut, you can call the module like a function:
vector = require "hump.vector"
a = vector(10,10)]===],
},
},
Function { name = "isvector",
short = "Test if value is a vector.",
long = "Test whether a variable is a vector.",
params = {
{"mixed", "v", "The variable to test."}
},
returns = {
{"boolean", "{#true} if {#v} is a vector, {#false} otherwise"}
},
example = [===[
if not vector.isvector(v) then
v = vector(v,0)
end]===],
},
Function { name = "vector:clone",
short = "Copy a vector.",
long = [===[
Copy a vector. Simply assigning a vector a vector to a variable will create
a reference, so when modifying the vector referenced by the new variable
would also change the old one:
[%a = vector(1,1) -- create vector
b = a -- b references a
c = a:clone() -- c is a copy of a
b.x = 0 -- changes a,b and c
print(a,b,c) -- prints '(1,0), (1,0), (1,1)']]===],
params = {},
returns = {
{"vector", "Copy of the vector"}
},
example = "copy = original:clone",
},
Function { name = "vector:unpack",
short = "Extract coordinates.",
long = "Extract coordinates.",
params = {},
returns = {
{"numbers", "The coordinates"}
},
example = {
"x,y = pos:unpack()",
"love.graphics.draw(self.image, self.pos:unpack())"
},
},
Function { name = "vector:permul",
short = "Per element multiplication.",
long = [===[
Multiplies vectors coordinate wise, i.e. {#result = vector(a.x * b.x, a.y * b.y)}.
This does not change either argument vectors, but creates a new one.]===],
params = {
{"vector", "other", "The other vector"}
},
returns = {
{"vector", "The new vector as described above"}
},
example = "scaled = original:permul(vector(1,1.5))",
},
Function { name = "vector:len",
short = "Get length.",
long = "Get length of a vector, i.e. {#math.sqrt(vec.x * vec.x + vec.y * vec.y)}.",
params = {},
returns = {
{"number", "Length of the vector."}
},
example = "distance = (a - b):len()",
},
Function { name = "vector:len2",
short = "Get squared length.",
long = "Get squared length of a vector, i.e. {#vec.x * vec.x + vec.y * vec.y}.",
params = {},
returns = {
{"number", "Squared length of the vector."}
},
example = [===[
-- get closest vertex to a given vector
closest, dsq = vertices[1], (pos - vertices[1]):len2()
for i = 2,#vertices do
local temp = (pos - vertices[i]):len2()
if temp < dsq then
closest, dsq = vertices[i], temp
end
end]===],
},
Function { name = "vector:dist",
short = "Distance to other vector.",
long = "Get distance of two vectors. The same as {#(a - b):len()}.",
params = {
{"vector", "other", "Other vector to measure the distance to."},
},
returns = {
{"number", "The distance of the vectors."}
},
example = [===[
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], pos:dist(vertices[1])
for i = 2,#vertices do
local temp = pos:dist(vertices[i])
if temp < dist then
closest, dist = vertices[i], temp
end
end]===],
},
Function { name = "vector:normalized",
short = "Get normalized vector.",
long = [===[
Get normalized vector, i.e. a vector with the same direction as the input
vector, but with length 1.
This does not change the input vector, but creates a new vector.]===],
params = {},
returns = {
{"vector", "Vector with same direction as the input vector, but length 1."}
},
example = "direction = velocity:normalized()"
},
Function { name = "vector:normalize_inplace",
short = "Normalize vector in-place.",
long = [===[
Normalize a vector, i.e. make the vector unit length. Great to use on
intermediate results.
{!This modifies the vector. If in doubt, use {#vector:normalized()}.}]===],
params = {},
returns = {
{"vector", "Itself - the normalized vector"}
},
example = "normal = (b - a):perpendicular():normalize_inplace()"
},
Function { name = "vector:rotated",
short = "Get rotated vector.",
long = [===[
Get a rotated vector.
This does not change the input vector, but creates a new vector.]===],
params = {
{"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."}
},
returns = {
{"vector", "The rotated vector"}
},
example = [===[
-- approximate a circle
circle = {}
for i = 1,30 do
local phi = 2 * math.pi * i / 30
circle[#circle+1] = vector(0,1):rotated(phi)
end]===],
sketch = {
"vector-rotated.png", "sketch of rotated vectors", width = 260, height = 171
},
},
Function { name = "vector:rotate_inplace",
short = "Rotate vector in-place.",
long = [===[
Rotate a vector in-place. Great to use on intermediate results.
{!This modifies the vector. If in doubt, use {#vector:rotate()}}]===],
params = {
{"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."}
},
returns = {
{"vector", "Itself - the rotated vector"}
},
example = [===[
-- ongoing rotation
spawner.direction:rotate_inplace(dt)]===],
},
Function { name = "vector:perpendicular",
short = "Get perpendicular vector.",
long = [===[
Quick rotation by 90&deg;. Creates a new vector. The same (but faster) as
{#vec:rotate(math.pi/2)}]===],
params = {},
returns = {
{"vector", "A vector perpendicular to the input vector"}
},
example = "normal = (b - a):perpendicular():normalize_inplace()",
sketch = {
"vector-perpendicular.png", "sketch of perpendicular vectors", width = 267, height = 202
},
},
Function { name = "vector:projectOn",
short = "Get projection onto another vector.",
long = "Project vector onto another vector (see sketch).",
params = {
{"vector", "v", "The vector to project on."}
},
returns = {
{"vector", "The projected vector."}
},
example = "velocity_component = velocity:projectOn(axis)",
sketch = {
"vector-projectOn.png", "sketch of vector projection", width = 605, height = 178
},
},
Function { name = "vector:mirrorOn",
short = "Mirrors vector on other vector",
long = "Mirrors vector on the axis defined by the other vector.",
params = {
{"vector", "v", "The vector to mirror on."}
},
returns = {
{"vector", "The mirrored vector."}
},
example = "deflected_velocity = ball.velocity:mirrorOn(surface_normal)",
sketch = {
"vector-mirrorOn.png", "sketch of vector mirroring on axis", width = 334, height = 201
},
},
Function { name = "vector:cross",
short = "Cross product of two vectors.",
long = [===[
Get cross product of both vectors. Equals the area of the parallelogram
spanned by both vectors.]===],
params = {
{"vector", "other", "Vector to compute the cross product with."}
},
returns = {
{"number", "Cross product of both vectors."}
},
example = "parallelogram_area = a:cross(b)",
sketch = {
"vector-cross.png", "sketch of vector cross product", width = 271, height = 137
},
},
}
Module { name = "hump.vector-light",
title = "vector-light",
short = "Lightweight 2D vector math.",
long = [===[
An table-free version of {#hump.vector}. Instead of a vector class, {#hump.vector-light} provides functions that operate on numbers.
Using this module instead of {#vector} might result in faster code, but does so at the expense of readability. Unless you are sure that it causes a significant performance penalty, I recommend to use {#hump.vector}.]===],
Function { name = "str",
short = "String representation.",
long = "Transforms a vector to a string of the form {#(x,y)}.",
params = {
{"numbers", "x,y", "The vector"}
},
returns = {
{"string", "The string representation"}
},
example = {
"print(vector.str(love.mouse.getPosition()))",
}
},
Function { name = { "mul", "div" },
short = {
"Product of a vector and a scalar.",
"Product of a vector and the inverse of a scalar.",
},
long = "Computes {#x*s,y*s} and {#x/s,y/s} respectively. The order of arguments is chosen so that it's possible to chain multiple operations (see example).",
params = {
{"number", "s", "The scalar."},
{"numbers", "x,y", "The vector."},
},
returns = {
{"numbers", "The result of the operation."}
},
example = {
"velx,vely = vec.mul(dt, vec.add(velx,vely, accx,accy))",
"x,y = vec.div(self.zoom, x-w/2, y-h/2)",
},
},
Function { name = { "add", "sub" },
short = {
"Sum of two vectors.",
"Difference of two vectors.",
},
long = "Computes the sum/difference of vectors. Same as {#x1+x2,y1+y2} and {#x1-x2,y1-y2} respectively. Meant to be used in conjunction with other functions.",
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"numbers", "The result of the operation."}
},
example = {
"player.x,player.y = vector.add(player.x,player.y, vector.mul(dt, dx,dy))",
"dx,dy = vector.sub(400,300, love.mouse.getPosition())",
},
},
Function { name = "permul",
short = "Per element multiplication.",
long = [===[
Multiplies vectors coordinate wise, i.e. {#x1*x2,y1*y2}.]===],
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"numbers", "The result of the operation."}
},
example = "x,y = vector.permul(x,y, 1,1.5)",
},
Function { name = "dot",
short = "[^http://en.wikipedia.org/wiki/Dot_product Dot product]",
long = "Computes the [^http://en.wikipedia.org/wiki/Dot_product dot product] of two vectors, {#x1*x2+y1*y2}.",
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"number", "The dot product."}
},
example = "cosphi = vector.dot(rx,ry, vx,vy)"
},
Function { name = {"det", "cross"},
short = { "Cross product", "Cross product", },
long = "Computes the cross product/determinant of two vectors, {#x1*y2-y1*x2}.",
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"number", "The cross product."}
},
example = "parallelogram_area = vector.det(ax,ay, bx,by)"
},
Function { name = {"eq", "le", "lt"},
short = { "Equality.", "Partial lexical order.", "Strict lexical order." },
long = [===[Compares two vectors according to [|
{#vector.eq(x1,y1, x2,y2)} :{#x1 == x2 and y1 == y2}
{#vector.le(x1,y1, x2,y2)} :{#x1 <= x2 and y1 <= y2}
{#vector.lt(x1,y1, x2,y2)} :{#x1 < x2 or (x1 == x2) and y1 <= y2}
]
]===],
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"boolean", "The result of the operation."}
},
example = "..."
},
Function { name = "len",
short = "Get length.",
long = "Get length of a vector, i.e. {#math.sqrt(x*x + y*y)}.",
params = {
{"numbers", "x,y", "The vector."}
},
returns = {
{"number", "Length of the vector."}
},
example = "distance = vector.len(love.mouse.getPosition())",
},
Function { name = "len2",
short = "Get squared length.",
long = "Get squared length of a vector, i.e. {#x*x + y*y}.",
params = {
{"numbers", "x,y", "The vector."}
},
returns = {
{"number", "Squared length of the vector."}
},
example = [===[
-- get closest vertex to a given vector
closest, dsq = vertices[1], vector.len2(px-vertices[1].x, py-vertices[1].y)
for i = 2,#vertices do
local temp = vector.len2(px-vertices[i].x, py-vertices[i].y)
if temp < dsq then
closest, dsq = vertices[i], temp
end
end]===],
},
Function { name = "dist",
short = "Distance of two points.",
long = "Get distance of two points. The same as {#vector.len(x1-x2, y1-y2)}.",
params = {
{"numbers", "x1,y1", "First vector."},
{"numbers", "x2,y2", "Second vector."},
},
returns = {
{"number", "The distance of the points."}
},
example = [===[
-- get closest vertex to a given vector
-- slightly slower than the example using len2()
closest, dist = vertices[1], vector.dist(px,py, vertices[1].x,vertices[1].y)
for i = 2,#vertices do
local temp = vector.dist(px,py, vertices[i].x,vertices[i].y)
if temp < dist then
closest, dist = vertices[i], temp
end
end]===],
},
Function { name = "normalize",
short = "Normalize vector.",
long = [===[
Get normalized vector, i.e. a vector with the same direction as the input
vector, but with length 1.]===],
params = {
{"numbers", "x,y", "The vector."},
},
returns = {
{"numbers", "Vector with same direction as the input vector, but length 1."}
},
example = "dx,dy = vector.normalize(vx,vy)"
},
Function { name = "rotate",
short = "Rotate vector.",
long = "Get a rotated vector.",
params = {
{"number", "phi", "Rotation angle in [^http://en.wikipedia.org/wiki/Radians radians]."},
{"numbers", "x,y", "The vector."},
},
returns = {
{"numbers", "The rotated vector"}
},
example = [===[
-- approximate a circle
circle = {}
for i = 1,30 do
local phi = 2 * math.pi * i / 30
circle[i*2-1], circle[i*2] = vector.rotate(phi, 0,1)
end]===],
},
Function { name = "perpendicular",
short = "Get perpendicular vector.",
long = "Quick rotation by 90&deg;. The same (but faster) as {#vector.rotate(math.pi/2, x,y)}",
params = {
{"numbers", "x,y", "The vector."},
},
returns = {
{"numbers", "A vector perpendicular to the input vector"}
},
example = "nx,ny = vector.normalize(vector.perpendicular(bx-ax, by-ay))",
},
Function { name = "project",
short = "Project projection onto another vector.",
long = "Project vector onto another vector.",
params = {
{"numbers", "x,y", "The vector to project."},
{"numbers", "u,v", "The vector to project onto."},
},
returns = {
{"numbers", "The projected vector."}
},
example = "vx_p,vy_p = vector.project(vx,vy, ax,ay)",
},
Function { name = "mirror",
short = "Mirrors vector on other vector.",
long = "Mirrors vector on the axis defined by the other vector.",
params = {
{"numbers", "x,y", "The vector to mirror."},
{"numbers", "u,v", "The vector defining the axis."},
},
returns = {
{"numbers", "The mirrored vector."}
},
example = "vx,vy = vector.mirror(vx,vy, surface.x,surface.y)",
},
}
Module { name = "hump.class",
title = "Class",
short = "Class-based object orientated programming for Lua",
long = "A small, fast class implementation with multiple inheritance support",
Function { name = "new",
short = "Declare a new class.",
long = [===[
Declare a new class.
The constructor will receive the newly create object as first argument.
You can check if an object is an instance of a class using {#object:is_a()}.
The name of the variable that holds the module can be used as a shortcut to
{#new()} (see example).]===],
params = { table_argument = true,
{"function", "constructor", "Class constructor. Can be accessed with {#theclass.construct(object, ...)}", optional = true},
{"string", "the_name", "Class name (used only to make the class compliant to {#tostring()}.", name = "name", optional = true},
{"class or table of classes", "super", "Classes to inherit from. Can either be a single class or a table of classes", name = "inherits", optional = true},
},
returns = {
{"class", "The class"}
},
example = {
[===[
Class = require 'hump.class' -- `Class' is now a shortcut to new()
-- define unnamed class
Feline = Class{function(self, size, weight)
self.size = size
self.weight = weight
end}
print(Feline) -- prints '<unnamed class>
-- define class method
function Feline:stats()
return string.format("size: %.02f, weight %.02f", self.size, self.weight)
end
-- create two objects
garfield = Feline(.7, 45)
felix = Feline(.8, 12)
print("Garfield: " .. garfield:stats(), "Felix: " .. felix:stats())
]===],
[===[
Class = require 'hump.class'
-- define class with explicit name 'Feline'
Feline = Class{name = "Feline", function(self, size, weight)
self.size = size
self.weight = weight
end}
garfield = Feline(.7, 45)
print(Feline, garfield) -- prints '<unnamed class> <instance of <unnamed class>>'
]===],
[===[
Class = require 'hump.class'
A = Class{}
function A:foo()
print('foo')
end
B = Class{}
function B:bar()
print('bar')
end
-- single inheritance
C = Class{inherits = A}
instance = C()
instance:foo() -- prints 'foo'
-- multiple inheritance
D = Class{inherits = {A,B}}
instance = D()
instance:foo() -- prints 'foo'
instance:bar() -- prints 'bar'
]===],
},
},
Function { name = "class.construct",
short = "Call class constructor.",
long = [===[
Calls class constructor of a class on an object
Derived classes use this function their constructors to initialize the
parent class(es) portions of the object.]===],
params = {
{"Object", "object", "The object. Usually {#self}."},
{"mixed", "...", "Arguments to pass to the constructor"},
},
returns = {
{"mixed", "Whatever the parent class constructor returns"},
},
example = {
[===[
Class = require 'hump.class'
Shape = Class{function(self, area)
self.area = area
end}
function Shape:__tostring()
return "area = " .. self.area
end
Rectangle = Class{inherits = Shape, function(self, width, height)
Shape.construct(self, width * height)
self.width = width
self.height = height
end}
function Rectangle:__tostring()
local strs = {
"width = " .. self.width,
"height = " .. self.height,
Shape.__tostring(self)
},
return table.concat(strs, ", ")
end
print( Rectangle(2,4) ) -- prints 'width = 2, height = 4, area = 8'
]===],
[===[
Menu = Class{function(self)
self.entries = {}
end}
function Menu:add(title, entry)
self.entries[#self.entries + 1] = entry
end
function Menu:display()
-- ...
end
Entry = Class{function(self, title, command)
self.title = title
self.command = command
end}
function Entry:execute()
return self.command()
end
Submenu = Class{inherits = {Menu, Entry}, function(self, title)
Menu.construct(self)
-- redirect self:execute() to self:display()
Entry.construct(self, title, Menu.display)
end}
]===]
},
},
Function { name = "class:inherit",
short = "Explicit class inheritance/mixin support.",
long = [===[
Inherit functions and variables of another class, if they are not already
defined for the class. This is done by simply copying the functions and
variables over to the subclass. The Lua rules for copying apply
(i.e. tables are referenced, functions and primitive types are copied by value).
{!Be careful with changing table values in a subclass: This will change the
value in the parent class too.}
If more than one parent class is specified, inherit from all of these, in
order of occurrence. That means that when two parent classes define the same
method, the one from the first class will be inherited.
Note: {#class:inherit()} doesn't actually care if the arguments supplied are
hump classes. Just any table will work.]===],
params = {
{"tables", "...", "Parent classes to inherit from"}
},
returns = {},
example = [===[
Class = require 'hump.class'
Entity = Class{function(self)
GameObjects.register(self)
end}
Collidable = {
dispatch_collision = function(self, other, dx, dy)
if self.collision_handler[other.type])
return collision_handler[other.type](self, other, dx, dy)
end
return collision_handler["*"](self, other, dx, dy)
end,
collision_handler = {["*"] = function() end},
}
Spaceship = Class{function(self)
self.type = "Spaceship"
-- ...
end}
-- make Spaceship collidable
Spaceship:inherit(Collidable)
function Spaceship:collision_handler["Spaceship"](other, dx, dy)
-- ...
end
]===]
},
Function { name = "object:is_a",
short = "Test object's type.",
long = "Tests whether an object is an instance of a class.",
params = {
{"class", "cls", "Class to test. Note: this is the class itself, {*not} the name of the class."}
},
returns = {
{"Boolean", "{#true} if the object is an instance of the class, {#false} otherwise"}
},
example = [===[
Class = require 'hump.class'
A = Class{}
B = Class{inherits=A}
C = Class{inherits=B}
a, b, c = A(), B(), C()
print(a:is_a(A), a:is_a(B), a:is_a(C)) --> true false false
print(b:is_a(A), b:is_a(B), b:is_a(C)) --> true true false
print(c:is_a(A), c:is_a(B), c:is_a(C)) --> true true true
D = Class{}
E = Class{inherits={B,D}}
d, e = D(), E()
print(d:is_a(A), d:is_a(B), d:is_a(D)) --> false false true
print(e:is_a(A), e:is_a(B), e:is_a(D)) --> true true true
]===]
},
Section { name = "caveats",
title = "Caveats",
content = [===[
Be careful when using metamethods like {#__add} or {#__mul}: If subclass
inherits those methods from a superclass, but does not overwrite them, the
result of the operation may be of the type superclass. Consider the following:
[%Class = require 'hump.class'
A = Class{function(self, x) self.x = x end}
function A:__add(other) return A(self.x + other.x) end
function A:show() print("A:", self.x) end
B = Class{inherits = A, function(self, x, y) A.construct(self, x) self.y = y end}
function B:show() print("B:", self.x, self.y) end
function B:foo() print("foo") end
one, two = B(1,2), B(3,4)
result = one + two
result:show() -- prints "A: 4"
result:foo() -- error: method does not exist]
Note that while you can define the {#__index} metamethod of the class, this
is not a good idea: It will break the class. To add a custom {#__index}
metamethod without breaking the class system, you have to use {#rawget()}.
But beware that this won't affect subclasses:
[%Class = require 'hump.class'
A = Class{}
function A:foo() print('bar') end
function A:__index(key)
print(key)
return rawget(A, key)
end
instance = A()
instance:foo() -- prints foo <newline> bar
B = Class{inherits = A}
instance = B()
instance:foo() -- prints only foo]]===],
},
}
Module { name = "hump.signal",
title = "Signal",
short = "Simple Signal/Slot (aka. Observer) implementation.",
long = [===[
A simple yet effective implementation of
[^http://en.wikipedia.org/wiki/Signals_and_slots Signals and Slots], also
known as [^http://en.wikipedia.org/wiki/Observer_pattern Observer pattern]:
Functions can be dynamically bound to {*signals}. When a signal is
{*emitted}, all registered functions will be invoked. Simple as that.
{#hump.signal} makes things more interesing by allowing to emit all signals
that match a [^http://www.lua.org/manual/5.1/manual.html#5.4.1 Lua string
pattern].]===],
Function { name = "new",
short = "Create new signal registry.",
long = [===[
{!If you don't need multiple independent registries, you can use the
global/default registry (see examples).}
Creates a new signal registry that is independent of the default
registry: It will manage it's own list of signals and does not in any
way affect the the global registry. Likewise, the global registry does
not affect the instance.
{!Note:} Independent registries use the colon-notation (e.g.
{#instance:emit("foo")}), while the global registry uses the
dot-notation (e.g. {#Signal.emit("foo")}).]===],
params = {},
returns = {
{"Registry", "A new signal registry."},
},
example = "player.signals = Signals.new()"
},
Function { name = {"register", "instance:register"},
short = "Register function with a signal.",
long = [===[
Registers a function {#f} to be called when signal {#s} is emitted.
]===],
params = {
{"string", "s", "The signal identifier."},
{"function", "f", "The function to register."}
},
returns = {
{"function", "A function handle to use in {#remove}."}
},
example = {
"Signal.register('level-complete', function() self.fanfare:play() end)",
"handle = Signal.register('level-load', function(level) level.show_help() end)",
"menu:register('key-left', select_previous_item)"
}
},
Function { name = {"emit", "instance:emit"},
short = "Call all functions bound to a signal.",
long = [===[
Calls all functions bound to signal {#s} with the supplied arguments.
]===],
params = {
{"string", "s", "The signal identifier."},
{"mixed", "...", "Arguments to pass to the bound functions.", optional = true},
},
returns = {},
example = {
[===[function love.keypressed(key)
if key == 'left' then menu:emit('key-left') end
end]===],
[===[if level.is_finished() then
Signal.emit('level-load', level.next_level)
end]===],
[===[function on_collide(dt, a,b, dx,dy)
a.signals:emit('collide', b, dx, dy)
b.signals:emit('collide', a, -dx,-dy)
end]===]
}
},
Function { name = {"remove", "instance:remove"},
short = "Remove functions from registry.",
long = [===[
Unbinds (removes) functions from signal {#s}.
]===],
params = {
{"string", "s", "The signal identifier."},
{"functions", "...", "Functions to unbind from the signal."}
},
returns = {},
example = {
"Signal.remove('level-load', handle)",
}
},
Function { name = {"clear", "instance:clear"},
short = "Clears a signal registry.",
long = [===[
Removes all functions from signal {#s}.
]===],
params = {
{"string", "s", "The signal identifier."},
},
returns = {},
example = "Signal.clear('key-left')",
},
Function { name = {"emit_pattern", "instance:emit_pattern"},
short = "Emits signals matching a pattern.",
long = [===[
Emits all signals matching a
[^http://www.lua.org/manual/5.1/manual.html#5.4.1 string pattern].
]===],
params = {
{"string", "p", "The signal identifier pattern."},
{"mixed", "...", "Arguments to pass to the bound functions.", optional = true},
},
returns = {},
example = "Signal.emit_pattern('^update%-.*', dt)",
},
Function { name = {"remove_pattern", "instance:remove_pattern"},
short = "Remove functions from signals matching a pattern.",
long = [===[
Removes functions from all signals matching a
[^http://www.lua.org/manual/5.1/manual.html#5.4.1 string pattern].
]===],
params = {
{"string", "p", "The signal identifier pattern."},
{"functions", "...", "Functions to unbind from the signals."}
},
returns = {},
example = "Signal.remove_pattern('key%-.*', play_click_sound)",
},
Function { name = {"clear_pattern", "instance:clear_pattern"},
short = "Clears signal registry matching a pattern.",
long = [===[
Removes all functions from all signals matching a
[^http://www.lua.org/manual/5.1/manual.html#5.4.1 string pattern].
]===],
params = {
{"string", "p", "The signal identifier pattern."},
},
returns = {},
example = {
"Signal.clear_pattern('sound%-.*')",
"Signal.clear_pattern('.*') -- clear all signals",
}
}
}
Module { name = "hump.camera",
title = "Camera",
short = "A camera for L&Ouml;VE",
long = [===[
{!Depends on hump.vector-light}
A camera utility for L&Ouml;VE. A camera can "look" at a position. It can zoom in and
out and it can rotate it's view. In the background, this is done by actually
moving, scaling and rotating everything in the game world. But don't worry about
that.]===],
Function { name = "new",
short = "Create a new camera object.",
long = [===[
Creates a new camera object. You can access the camera position using
{#camera.x, camera.y}, the zoom using {#camera.zoom} and the rotation using
{#camera.rot}.
The module variable name can be used at a shortcut to {#new()}.]===],
params = {
{"numbers", "x,y", "Point for the camera to look at.", default = "screen center"},
{"number", "zoom", "Camera zoom.", default = "1"},
{"number", "rot", "Camera rotation in radians.", default = "0"},
},
returns = {
{"camera", "A new camera object."}
},
example = [===[
camera = require 'hump.camera'
-- camera looking at (100,100) with zoom 2 and rotated by 45 degrees
cam = camera(100,100, 2, math.pi/2)
]===]
},
Function { name = "camera:rotate",
short = "Rotate camera object.",
long = [===[
Rotate the camera {*by} some angle. To {*set} the angle use
{#camera.rot = new_angle}.
This function is shortcut to {#camera.rot = camera.rot + angle}.]===],
params = {
{"number", "angle", "Rotation angle in radians"}
},
returns = {
{"camera", "The camera object."}
},
example = {
"function love.update(dt)\n camera:rotate(dt)\nend",
"function love.update(dt)\n camera:rotate(dt):move(dt,dt)\nend"
},
},
Function { name = "camera:move",
short = "Move camera object.",
long = [===[
{*Move} the camera {*by} some vector. To {*set} the position, use {#camera.x,camera.y = new_x,new_y}.
This function is shortcut to {#camera.x,camera.y = camera.x+dx, camera.y+dy}.]===],
params = {
{"numbers", "dx,dy", "Direction to move the camera."},
},
returns = {
{"camera", "The camera object."},
},
example = {
"function love.update(dt)\n camera:move(dt * 5, dt * 6):rotate(dt)\nend"
},
},
Function { name = "camera:attach",
short = "Attach camera object.",
long = [===[
Start looking through the camera.
Apply camera transformations, i.e. move, scale and rotate everything until
{#camera:detach()} as if looking through the camera.]===],
params = {},
returns = {},
example = [===[
function love.draw()
camera:attach()
draw_world()
cam:detach()
draw_hud()
end]===]
},
Function { name = "camera:detach",
short = "Detach camera object.",
long = "Stop looking through the camera.",
params = {},
returns = {},
example = [===[
function love.draw()
camera:attach()
draw_world()
cam:detach()
draw_hud()
end]===]
},
Function { name = "camera:draw",
short = "Attach, draw and detach.",
long = [===[
Wrap a function between a {#camera:attach()}/{#camera:detach()} pair:
[%cam:attach()
func()
cam:detach()]]===],
params = {
{"function", "func", "Drawing function to be wrapped."},
},
returns = {},
example = [===[
function love.draw()
camera:draw(draw_world)
draw_hud()
end]===]
},
Function { name = {
"camera:worldCoords",
"camera:cameraCoords",
},
short = {
"Convert point to world coordinates.",
"Convert point to camera coordinates.",
},
long = [===[
Because a camera has a point it looks at, a rotation and a zoom factor, it
defines a coordinate system. A point now has two sets of coordinates: One
defines where the point is to be found in the game world, and the other
describes the position on the computer screen. The first set of coordinates
is called {*world coordinates}, the second one {*camera coordinates}.
Sometimes it is needed to convert between the two coordinate systems, for
example to get the position of a mouse click in the game world in a strategy
game, or to see if an object is visible on the screen.
These two functions convert a point between these two coordinate systems.]===],
params = {
{"numbers", "x, y", "Point to transform."},
},
returns = {
{"numbers", "Transformed point."},
},
example = {
[===[
x,y = camera:worldCoords(love.mouse.getPosition())
selectedUnit:plotPath(x,y)
]===], [===[
x,y = cam:cameraCoords(player.pos)
love.graphics.line(x, y, love.mouse.getPosition())
]===]
},
},
Function { name = "camera:mousepos",
short = "Get mouse position in world coordinates.",
long = "Shortcut to {#camera:worldCoords(love.mouse.getPosition())}.",
params = {},
returns = {
{"numbers", "Mouse position in world coordinates."},
},
example = [===[
x,y = camera:mousepos()
selectedUnit:plotPath(x,y)
]===],
},
}
Module { name = "hump.ringbuffer",
title = "Ringbuffer",
short = "A data structure that wraps around itself.",
long = [===[
A ring-buffer is a circular array: It does not have a first nor a last item,
but it has a {*selected} or {*current} element.
A ring-buffer can be used to implement {*Tomb Raider} style inventories, looping
play-lists, recurring dialogs (like a unit's answers when selecting it multiple
times in {*Warcraft}) and generally everything that has a circular or looping
structure.]===],
Function { name = "new",
short = "Create new ring-buffer.",
long = "Create new ring-buffer.\n\nThe module name is a shortcut to this function.",
params = {
{"mixed", "...", "Initial elements."}
},
returns = {
{"Ringbuffer", "The ring-buffer object."},
},
example = [===[
Ringbuffer = require 'hump.ringbuffer'
rb = ringbuffer(1,2,3)
]===]
},
Function { name = "ringbuffer:insert",
short = "Insert element.",
long = "Insert items behind current element.",
params = {
{"mixed", "...", "Items to insert."},
},
returns = {},
example = [===[
rb = RingbuffeR(1,5,6) -- content: 1,5,6
rb:insert(2,3,4) -- content: 1,2,3,4,5,6
]===]
},
Function { name = "ringbuffer:remove",
short = "Remove currently selected item.",
long = "Remove current item, return it and select next element.",
params = {},
returns = {
{"mixed", "The removed item."}
},
example = [===[
rb = Ringbuffer(1,2,3,4) -- content: 1,2,3,4
val = rb:remove() -- content: 2,3,4
print(val) -- prints `1'
]===]
},
Function { name = "ringbuffer:removeAt",
short = "Remove an item.",
long = "Remove the item at a position relative to the current element.",
params = {
{"number", "pos", "Position of the item to remove."}
},
returns = {
{"mixed", "The removed item."}
},
example = [===[
rb = Ringbuffer(1,2,3,4,5) -- content: 1,2,3,4,5
rb:removeAt(2) -- content: 1,2,4,5
rb:removeAt(-1) -- content: 1,2,4
]===]
},
Function { name = "ringbuffer:next",
short = "Select next item.",
long = "Select and return the next element.",
params = {},
returns = {
{"mixed", "The next item."}
},
example = [===[
rb = Ringbuffer(1,2,3)
rb:next() -- content: 2,3,1
rb:next() -- content: 3,1,2
x = rb:next() -- content: 1,2,3
print(x) -- prints `1'
]===]
},
Function { name = "ringbuffer:prev",
short = "Select previous item.",
long = "Select and return the previous item.",
params = {},
returns = {
{"mixed", "The previous item."}
},
example = [===[
rb = Ringbuffer(1,2,3)
rb:prev()) -- content: 3,1,2
rb:prev()) -- content: 2,3,1
x = rb:prev() -- content: 1,2,3
print(x) -- prints `1'
]===]
},
Function { name = "ringbuffer:get",
short = "Get currently selected item.",
long = "Return the current element.",
params = {},
returns = {
{"mixed", "The currently selected element."}
},
example = [===[
rb = Ringbuffer(1,2,3)
rb:next() -- content: 2,3,1
print(rb:get()) -- prints '2'
]===]
},
Function { name = "ringbuffer:size",
short = "Get ringbuffer size.",
long = "Get number of items in the buffer",
params = {},
returns = {
{"number", "Number of items in the buffer."},
},
example = [===[
rb = Ringbuffer(1,2,3)
print(rb:size()) -- prints '3'
rb:remove()
print(rb:size()) -- prints '2'
]===]
},
}