local bump = { _VERSION = 'bump v3.1.2', _URL = 'https://github.com/kikito/bump.lua', _DESCRIPTION = 'A collision detection library for Lua', _LICENSE = [[ MIT LICENSE Copyright (c) 2014 Enrique GarcĂ­a Cota Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]] } ------------------------------------------ -- Auxiliary functions ------------------------------------------ local abs, floor, ceil, min, max = math.abs, math.floor, math.ceil, math.min, math.max local function sign(x) if x > 0 then return 1 end if x == 0 then return 0 end return -1 end local function nearest(x, a, b) if abs(a - x) < abs(b - x) then return a else return b end end local function assertType(desiredType, value, name) if type(value) ~= desiredType then error(name .. ' must be a ' .. desiredType .. ', but was ' .. tostring(value) .. '(a ' .. type(value) .. ')') end end local function assertIsPositiveNumber(value, name) if type(value) ~= 'number' or value <= 0 then error(name .. ' must be a positive integer, but was ' .. tostring(value) .. '(' .. type(value) .. ')') end end local function assertIsRect(x,y,w,h) assertType('number', x, 'x') assertType('number', y, 'y') assertIsPositiveNumber(w, 'w') assertIsPositiveNumber(h, 'h') end local defaultFilter = function() return 'slide' end ------------------------------------------ -- Rectangle functions ------------------------------------------ local function rect_getNearestCorner(x,y,w,h, px, py) return nearest(px, x, x+w), nearest(py, y, y+h) end -- This is a generalized implementation of the liang-barsky algorithm, which also returns -- the normals of the sides where the segment intersects. -- Returns nil if the segment never touches the rect -- Notice that normals are only guaranteed to be accurate when initially ti1, ti2 == -math.huge, math.huge local function rect_getSegmentIntersectionIndices(x,y,w,h, x1,y1,x2,y2, ti1,ti2) ti1, ti2 = ti1 or 0, ti2 or 1 local dx, dy = x2-x1, y2-y1 local nx, ny local nx1, ny1, nx2, ny2 = 0,0,0,0 local p, q, r for side = 1,4 do if side == 1 then nx,ny,p,q = -1, 0, -dx, x1 - x -- left elseif side == 2 then nx,ny,p,q = 1, 0, dx, x + w - x1 -- right elseif side == 3 then nx,ny,p,q = 0, -1, -dy, y1 - y -- top else nx,ny,p,q = 0, 1, dy, y + h - y1 -- bottom end if p == 0 then if q <= 0 then return nil end else r = q / p if p < 0 then if r > ti2 then return nil elseif r > ti1 then ti1,nx1,ny1 = r,nx,ny end else -- p > 0 if r < ti1 then return nil elseif r < ti2 then ti2,nx2,ny2 = r,nx,ny end end end end return ti1,ti2, nx1,ny1, nx2,ny2 end -- Calculates the minkowsky difference between 2 rects, which is another rect local function rect_getDiff(x1,y1,w1,h1, x2,y2,w2,h2) return x2 - x1 - w1, y2 - y1 - h1, w1 + w2, h1 + h2 end local delta = 0.00001 -- floating-point-safe comparisons here, otherwise bugs local function rect_containsPoint(x,y,w,h, px,py) return px - x > delta and py - y > delta and x + w - px > delta and y + h - py > delta end local function rect_isIntersecting(x1,y1,w1,h1, x2,y2,w2,h2) return x1 < x2+w2 and x2 < x1+w1 and y1 < y2+h2 and y2 < y1+h1 end local function rect_getSquareDistance(x1,y1,w1,h1, x2,y2,w2,h2) local dx = x1 - x2 + (w1 - w2)/2 local dy = y1 - y2 + (h1 - h2)/2 return dx*dx + dy*dy end local function rect_detectCollision(x1,y1,w1,h1, x2,y2,w2,h2, goalX, goalY) goalX = goalX or x1 goalY = goalY or y1 local dx, dy = goalX - x1, goalY - y1 local x,y,w,h = rect_getDiff(x1,y1,w1,h1, x2,y2,w2,h2) local overlaps, ti, nx, ny if rect_containsPoint(x,y,w,h, 0,0) then -- item was intersecting other local px, py = rect_getNearestCorner(x,y,w,h, 0, 0) local wi, hi = min(w1, abs(px)), min(h1, abs(py)) -- area of intersection ti = -wi * hi -- ti is the negative area of intersection overlaps = true else local ti1,ti2,nx1,ny1 = rect_getSegmentIntersectionIndices(x,y,w,h, 0,0,dx,dy, -math.huge, math.huge) -- item tunnels into other if ti1 and ti1 < 1 and (0 < ti1 or 0 == ti1 and ti2 > 0) then ti, nx, ny = ti1, nx1, ny1 overlaps = false end end if not ti then return end local tx, ty if overlaps then if dx == 0 and dy == 0 then -- intersecting and not moving - use minimum displacement vector local px, py = rect_getNearestCorner(x,y,w,h, 0,0) if abs(px) < abs(py) then py = 0 else px = 0 end nx, ny = sign(px), sign(py) tx, ty = x1 + px, y1 + py else -- intersecting and moving - move in the opposite direction local ti1 ti1,_,nx,ny = rect_getSegmentIntersectionIndices(x,y,w,h, 0,0,dx,dy, -math.huge, 1) tx, ty = x1 + dx * ti1, y1 + dy * ti1 end else -- tunnel tx, ty = x1 + dx * ti, y1 + dy * ti end return { overlaps = overlaps, ti = ti, move = {x = dx, y = dy}, normal = {x = nx, y = ny}, touch = {x = tx, y = ty}, itemRect = {x = x1, y = y1, w = w1, h = h1}, otherRect = {x = x2, y = y2, w = w2, h = h2} } end ------------------------------------------ -- Grid functions ------------------------------------------ local function grid_toWorld(cellSize, cx, cy) return (cx - 1)*cellSize, (cy-1)*cellSize end local function grid_toCell(cellSize, x, y) return floor(x / cellSize) + 1, floor(y / cellSize) + 1 end -- grid_traverse* functions are based on "A Fast Voxel Traversal Algorithm for Ray Tracing", -- by John Amanides and Andrew Woo - http://www.cse.yorku.ca/~amana/research/grid.pdf -- It has been modified to include both cells when the ray "touches a grid corner", -- and with a different exit condition local function grid_traverse_initStep(cellSize, ct, t1, t2) local v = t2 - t1 if v > 0 then return 1, cellSize / v, ((ct + v) * cellSize - t1) / v elseif v < 0 then return -1, -cellSize / v, ((ct + v - 1) * cellSize - t1) / v else return 0, math.huge, math.huge end end local function grid_traverse(cellSize, x1,y1,x2,y2, f) local cx1,cy1 = grid_toCell(cellSize, x1,y1) local cx2,cy2 = grid_toCell(cellSize, x2,y2) local stepX, dx, tx = grid_traverse_initStep(cellSize, cx1, x1, x2) local stepY, dy, ty = grid_traverse_initStep(cellSize, cy1, y1, y2) local cx,cy = cx1,cy1 f(cx, cy) -- The default implementation had an infinite loop problem when -- approaching the last cell in some occassions. We finish iterating -- when we are *next* to the last cell while abs(cx - cx2) + abs(cy - cy2) > 1 do if tx < ty then tx, cx = tx + dx, cx + stepX f(cx, cy) else -- Addition: include both cells when going through corners if tx == ty then f(cx + stepX, cy) end ty, cy = ty + dy, cy + stepY f(cx, cy) end end -- If we have not arrived to the last cell, use it if cx ~= cx2 or cy ~= cy2 then f(cx2, cy2) end end local function grid_toCellRect(cellSize, x,y,w,h) local cx,cy = grid_toCell(cellSize, x, y) local cr,cb = ceil((x+w) / cellSize), ceil((y+h) / cellSize) return cx, cy, cr - cx + 1, cb - cy + 1 end ------------------------------------------ -- Responses ------------------------------------------ local touch = function(world, col, x,y,w,h, goalX, goalY, filter) local touch = col.touch return touch.x, touch.y, {}, 0 end local cross = function(world, col, x,y,w,h, goalX, goalY, filter) local touch = col.touch local cols, len = world:project(col.item, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len end local slide = function(world, col, x,y,w,h, goalX, goalY, filter) goalX = goalX or x goalY = goalY or y local touch, move = col.touch, col.move local sx, sy = touch.x, touch.y if move.x ~= 0 or move.y ~= 0 then if col.normal.x == 0 then sx = goalX else sy = goalY end end col.slide = {x = sx, y = sy} x,y = touch.x, touch.y goalX, goalY = sx, sy local cols, len = world:project(col.item, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len end local bounce = function(world, col, x,y,w,h, goalX, goalY, filter) goalX = goalX or x goalY = goalY or y local touch, move = col.touch, col.move local tx, ty = touch.x, touch.y local bx, by, bnx, bny = tx, ty, 0,0 if move.x ~= 0 or move.y ~= 0 then bnx, bny = goalX - tx, goalY - ty if col.normal.x == 0 then bny = -bny else bnx = -bnx end bx, by = tx + bnx, ty + bny end col.bounce = {x = bx, y = by} x,y = touch.x, touch.y goalX, goalY = bx, by local cols, len = world:project(col.item, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len end local onewayplatform = function(world, col, x,y,w,h, goalX, goalY, filter) if col.normal.y < 0 and not col.overlaps then col.didTouch = true goalX, goalY, cols, len = slide(world, col, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len else goalX, goalY, cols, len = cross(world, col, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len end end local onewayplatformTouch = function(world, col, x,y,w,h, goalX, goalY, filter) if col.normal.y < 0 and not col.overlaps then col.didTouch = true goalX, goalY, cols, len = touch(world, col, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len else goalX, goalY, cols, len = cross(world, col, x,y,w,h, goalX, goalY, filter) return goalX, goalY, cols, len end end ------------------------------------------ -- World ------------------------------------------ local World = {} local World_mt = {__index = World} -- Private functions and methods local function sortByWeight(a,b) return a.weight < b.weight end local function sortByTiAndDistance(a,b) if a.ti == b.ti then local ir, ar, br = a.itemRect, a.otherRect, b.otherRect local ad = rect_getSquareDistance(ir.x,ir.y,ir.w,ir.h, ar.x,ar.y,ar.w,ar.h) local bd = rect_getSquareDistance(ir.x,ir.y,ir.w,ir.h, br.x,br.y,br.w,br.h) return ad < bd end return a.ti < b.ti end local function addItemToCell(self, item, cx, cy) self.rows[cy] = self.rows[cy] or setmetatable({}, {__mode = 'v'}) local row = self.rows[cy] row[cx] = row[cx] or {itemCount = 0, x = cx, y = cy, items = setmetatable({}, {__mode = 'k'})} local cell = row[cx] self.nonEmptyCells[cell] = true if not cell.items[item] then cell.items[item] = true cell.itemCount = cell.itemCount + 1 end end local function removeItemFromCell(self, item, cx, cy) local row = self.rows[cy] if not row or not row[cx] or not row[cx].items[item] then return false end local cell = row[cx] cell.items[item] = nil cell.itemCount = cell.itemCount - 1 if cell.itemCount == 0 then self.nonEmptyCells[cell] = nil end return true end local function getDictItemsInCellRect(self, cl,ct,cw,ch) local items_dict = {} for cy=ct,ct+ch-1 do local row = self.rows[cy] if row then for cx=cl,cl+cw-1 do local cell = row[cx] if cell and cell.itemCount > 0 then -- no cell.itemCount > 1 because tunneling for item,_ in pairs(cell.items) do items_dict[item] = true end end end end end return items_dict end local function getCellsTouchedBySegment(self, x1,y1,x2,y2) local cells, cellsLen, visited = {}, 0, {} grid_traverse(self.cellSize, x1,y1,x2,y2, function(cx, cy) local row = self.rows[cy] if not row then return end local cell = row[cx] if not cell or visited[cell] then return end visited[cell] = true cellsLen = cellsLen + 1 cells[cellsLen] = cell end) return cells, cellsLen end local function getInfoAboutItemsTouchedBySegment(self, x1,y1, x2,y2, filter) local cells, len = getCellsTouchedBySegment(self, x1,y1,x2,y2) local cell, rect, l,t,w,h, ti1,ti2, tii0,tii1 local visited, itemInfo, itemInfoLen = {},{},0 for i=1,len do cell = cells[i] for item in pairs(cell.items) do if not visited[item] then visited[item] = true if (not filter or filter(item)) then rect = self.rects[item] l,t,w,h = rect.x,rect.y,rect.w,rect.h ti1,ti2 = rect_getSegmentIntersectionIndices(l,t,w,h, x1,y1, x2,y2, 0, 1) if ti1 and ((0 < ti1 and ti1 < 1) or (0 < ti2 and ti2 < 1)) then -- the sorting is according to the t of an infinite line, not the segment tii0,tii1 = rect_getSegmentIntersectionIndices(l,t,w,h, x1,y1, x2,y2, -math.huge, math.huge) itemInfoLen = itemInfoLen + 1 itemInfo[itemInfoLen] = {item = item, ti1 = ti1, ti2 = ti2, weight = min(tii0,tii1)} end end end end end table.sort(itemInfo, sortByWeight) return itemInfo, itemInfoLen end local function getResponseByName(self, name) local response = self.responses[name] if not response then error(('Unknown collision type: %s (%s)'):format(name, type(name))) end return response end -- Misc Public Methods function World:addResponse(name, response) self.responses[name] = response end function World:project(item, x,y,w,h, goalX, goalY, filter) assertIsRect(x,y,w,h) goalX = goalX or x goalY = goalY or y filter = filter or defaultFilter local collisions, len = {}, 0 local visited = {} if item ~= nil then visited[item] = true end -- This could probably be done with less cells using a polygon raster over the cells instead of a -- bounding rect of the whole movement. Conditional to building a queryPolygon method local tl, tt = min(goalX, x), min(goalY, y) local tr, tb = max(goalX + w, x+w), max(goalY + h, y+h) local tw, th = tr-tl, tb-tt local cl,ct,cw,ch = grid_toCellRect(self.cellSize, tl,tt,tw,th) local dictItemsInCellRect = getDictItemsInCellRect(self, cl,ct,cw,ch) for other,_ in pairs(dictItemsInCellRect) do if not visited[other] then visited[other] = true local responseName = filter(item, other) if responseName then local ox,oy,ow,oh = self:getRect(other) local col = rect_detectCollision(x,y,w,h, ox,oy,ow,oh, goalX, goalY) if col then col.other = other col.item = item col.type = responseName len = len + 1 collisions[len] = col end end end end table.sort(collisions, sortByTiAndDistance) return collisions, len end function World:countCells() local count = 0 for _,row in pairs(self.rows) do for _,_ in pairs(row) do count = count + 1 end end return count end function World:hasItem(item) return not not self.rects[item] end function World:getItems() local items, len = {}, 0 for item,_ in pairs(self.rects) do len = len + 1 items[len] = item end return items, len end function World:countItems() local len = 0 for _ in pairs(self.rects) do len = len + 1 end return len end function World:getRect(item) local rect = self.rects[item] if not rect then error('Item ' .. tostring(item) .. ' must be added to the world before getting its rect. Use world:add(item, x,y,w,h) to add it first.') end return rect.x, rect.y, rect.w, rect.h end function World:toWorld(cx, cy) return grid_toWorld(self.cellSize, cx, cy) end function World:toCell(x,y) return grid_toCell(self.cellSize, x, y) end --- Query methods function World:queryRect(x,y,w,h, filter) local cl,ct,cw,ch = grid_toCellRect(self.cellSize, x,y,w,h) local dictItemsInCellRect = getDictItemsInCellRect(self, cl,ct,cw,ch) local items, len = {}, 0 local rect for item,_ in pairs(dictItemsInCellRect) do rect = self.rects[item] if (not filter or filter(item)) and rect_isIntersecting(x,y,w,h, rect.x, rect.y, rect.w, rect.h) then len = len + 1 items[len] = item end end return items, len end function World:queryPoint(x,y, filter) local cx,cy = self:toCell(x,y) local dictItemsInCellRect = getDictItemsInCellRect(self, cx,cy,1,1) local items, len = {}, 0 local rect for item,_ in pairs(dictItemsInCellRect) do rect = self.rects[item] if (not filter or filter(item)) and rect_containsPoint(rect.x, rect.y, rect.w, rect.h, x, y) then len = len + 1 items[len] = item end end return items, len end function World:querySegment(x1, y1, x2, y2, filter) local itemInfo, len = getInfoAboutItemsTouchedBySegment(self, x1, y1, x2, y2, filter) local items = {} for i=1, len do items[i] = itemInfo[i].item end return items, len end function World:querySegmentWithCoords(x1, y1, x2, y2, filter) local itemInfo, len = getInfoAboutItemsTouchedBySegment(self, x1, y1, x2, y2, filter) local dx, dy = x2-x1, y2-y1 local info, ti1, ti2 for i=1, len do info = itemInfo[i] ti1 = info.ti1 ti2 = info.ti2 info.weight = nil info.x1 = x1 + dx * ti1 info.y1 = y1 + dy * ti1 info.x2 = x1 + dx * ti2 info.y2 = y1 + dy * ti2 end return itemInfo, len end --- Main methods function World:add(item, x,y,w,h) local rect = self.rects[item] if rect then error('Item ' .. tostring(item) .. ' added to the world twice.') end assertIsRect(x,y,w,h) self.rects[item] = {x=x,y=y,w=w,h=h} local cl,ct,cw,ch = grid_toCellRect(self.cellSize, x,y,w,h) for cy = ct, ct+ch-1 do for cx = cl, cl+cw-1 do addItemToCell(self, item, cx, cy) end end return item end function World:remove(item) local x,y,w,h = self:getRect(item) self.rects[item] = nil local cl,ct,cw,ch = grid_toCellRect(self.cellSize, x,y,w,h) for cy = ct, ct+ch-1 do for cx = cl, cl+cw-1 do removeItemFromCell(self, item, cx, cy) end end end function World:update(item, x2,y2,w2,h2) local x,y,w,h = self:getRect(item) w2,h2 = w2 or w, h2 or h assertIsRect(x2,y2,w2,h2) if x ~= x2 or y ~= y2 or w ~= w2 or h ~= h2 then local cellSize = self.cellSize local cl1,ct1,cw1,ch1 = grid_toCellRect(cellSize, x,y,w,h) local cl2,ct2,cw2,ch2 = grid_toCellRect(cellSize, x2,y2,w2,h2) if cl1==cl2 and ct1==ct2 and cw1==cw2 and ch1==ch2 then local rect = self.rects[item] rect.x, rect.y, rect.w, rect.h = x2,y2,w2,h2 else self:remove(item) self:add(item, x2,y2,w2,h2) end end end function World:move(item, goalX, goalY, filter) local actualX, actualY, cols, len = self:check(item, goalX, goalY, filter) self:update(item, actualX, actualY) return actualX, actualY, cols, len end function World:check(item, goalX, goalY, filter) filter = filter or defaultFilter local visited = {[item] = true} local visitedFilter = function(item, other) if visited[other] then return false end return filter(item, other) end local cols, len = {}, 0 local x,y,w,h = self:getRect(item) local projected_cols, projected_len = self:project(item, x,y,w,h, goalX,goalY, visitedFilter) while projected_len > 0 do local col = projected_cols[1] len = len + 1 cols[len] = col visited[col.other] = true local response = getResponseByName(self, col.type) goalX, goalY, projected_cols, projected_len = response( self, col, x, y, w, h, goalX, goalY, visitedFilter ) end return goalX, goalY, cols, len end -- Public library functions bump.newWorld = function(cellSize) cellSize = cellSize or 64 assertIsPositiveNumber(cellSize, 'cellSize') local world = setmetatable({ cellSize = cellSize, rects = {}, rows = {}, nonEmptyCells = {}, responses = {} }, World_mt) world:addResponse('touch', touch) world:addResponse('cross', cross) world:addResponse('slide', slide) world:addResponse('bounce', bounce) -- modified here world:addResponse('onewayplatform', onewayplatform) world:addResponse('onewayplatformTouch', onewayplatformTouch) -- to here return world end bump.rect = { getNearestCorner = rect_getNearestCorner, getSegmentIntersectionIndices = rect_getSegmentIntersectionIndices, getDiff = rect_getDiff, containsPoint = rect_containsPoint, isIntersecting = rect_isIntersecting, getSquareDistance = rect_getSquareDistance, detectCollision = rect_detectCollision } bump.responses = { touch = touch, cross = cross, slide = slide, bounce = bounce } return bump